File size: 8,484 Bytes
df152d2 1b41aad df152d2 1b41aad df152d2 75aba40 df152d2 12af25f df152d2 6b38d1c df152d2 464266c df152d2 d6efe80 df152d2 515e80f d6efe80 515e80f d6efe80 515e80f df152d2 5781b6d a4751c5 5781b6d bbfe714 df152d2 f207e15 75aba40 f207e15 df152d2 a1e1530 df152d2 5781b6d 1e0c40c 5781b6d 71467f3 5781b6d 55149ca 5781b6d 55149ca 5781b6d 55149ca 5781b6d 55149ca 8535d2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
language:
- eng
tags:
- llama-2
- sft
license:
- mit
datasets:
- LDJnr/Puffin
---
## **Redmond-Puffin-13b-V1.3**
**The first commercially available language model released by Nous Research!**
Redmond-Puffin-13B is likely the worlds first llama-2 based, fine-tuned language models, leveraging a hand curated set of 3K high quality examples, many of which take full advantage of the 4096 context length of Llama 2. This model was fine-tuned by Nous Research, with LDJ leading the training and dataset curation, along with significant dataset formation contributions by J-Supha.
Special thank you to Redmond AI for sponsoring the compute.
Special thank you to Emozilla for assisting with training experimentations and many issues encountered during training.
Notable mentions for assisting in some of the training issues goes to: Caseus and Teknium.
## Model Training
Redmond-Puffin 13B-V1.3 is a new model trained for multiple epochs on a dataset of 3,000 carefully curated GPT-4 examples, most of which are long context conversations between a real human and GPT-4.
Additional data came from carefully curated sub sections of datasets such as CamelAI's Physics, Chemistry, Biology and Math.
## Prompt Format
The reccomended model usage is:
WARNING, THE PREVIOUS RECCOMENDATION THAT SAID TO USE "### human" and "# response" WAS A CRITICAL ERROR, PLEASE USE THE ACCURATE PREFIX AND SUFFIX BELOW.
```
USER:
ASSISTANT:
```
## When should I use Puffin or Hermes 2?
Puffin and Hermes-2 both beat previous SOTA for GPT4ALL benchmarks, with Hermes-2 winning by a 0.1% margin over Puffin.
- Hermes 2 is trained on purely single turn instruction examples.
- Puffin is trained mostly on multi-turn, long context, highly curated and cleaned GPT-4 conversations with real humans, as well as curated single-turn examples relating to Physics, Bio, Math and Chem.
For these reasons, it's reccomended to give Puffin a try if you want to have multi-turn conversations and/or long context communication.
## Example Outputs!:
![puffin](https://i.imgur.com/P0MsN8B.png)
![puffin](https://i.imgur.com/8EO3ThV.png)
![puffin](https://i.imgur.com/5IWolFw.png)
![puffin](https://i.imgur.com/TQui8m7.png)
![puffin](https://i.imgur.com/tderIfl.png)
## Notable Features:
- The first Llama-2 based fine-tuned model released by Nous Research.
- Ability to recall information upto 2023 without internet (ChatGPT cut off date is in 2021)
- Pretrained on 2 trillion tokens of text. (This is double the amount of most Open LLM's)
- Pretrained with a context length of 4096 tokens, and fine-tuned on a significant amount of multi-turn conversations reaching that full token limit.
- The first commercially available language model released by Nous Research.
## Current Limitations
Some token mismatch problems and formatting issues have been idenitifed, these may very possibly effect the current output quality.
We plan to have these solved in an updated Puffin model in the very near future, please stay tuned!
## Future Plans
This is a relatively early build amongst the grand plans for the future of Puffin!
Current limitations: Some token mismatch problems have been identified, these may effect the current output quality, we plan to have this solved in Puffin V2 along with other improvements.
## How you can help!
In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations.
If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact LDJ on discord!
## Benchmarks!
As of Puffins release, it achieves a new SOTA for the GPT4All benchmarks! Supplanting Hermes for the #1 position!
(Rounded to nearest tenth)
Previous Sota: Hermes - 68.8
New Sota: Puffin - 69.9 (+1.1)
note: After release, Puffin has since had its average GPT4All score beaten by 0.1%, by Nous' very own Model Hermes-2!
Latest SOTA w/ Hermes 2- 70.0 (+0.1 over Puffins 69.9 score)
That being said, Puffin supplants Hermes-2 for the #1 spot in Arc-E, HellaSwag and Winogrande!
Puffin also perfectly ties with Hermes in PIQA, however Hermes-2 still excels in much of Big Bench and AGIEval, so it's highly reccomended you give it a try as well!
GPT4all :
```
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.4983|± |0.0146|
| | |acc_norm|0.5068|± |0.0146|
|arc_easy | 0|acc |0.7980|± |0.0082|
| | |acc_norm|0.7757|± |0.0086|
|boolq | 1|acc |0.8150|± |0.0068|
|hellaswag | 0|acc |0.6132|± |0.0049|
| | |acc_norm|0.8043|± |0.0040|
|openbookqa | 0|acc |0.3560|± |0.0214|
| | |acc_norm|0.4560|± |0.0223|
|piqa | 0|acc |0.7954|± |0.0094|
| | |acc_norm|0.8069|± |0.0092|
|winogrande | 0|acc |0.7245|± |0.0126|
```
```
| Task |Version| Metric |Value | |Stderr|
|------------------------------------------------|------:|---------------------|-----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|0.5368|± |0.0363|
|bigbench_date_understanding | 0|multiple_choice_grade|0.7127|± |0.0236|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3023|± |0.0286|
|bigbench_geometric_shapes | 0|multiple_choice_grade|0.1003|± |0.0159|
| | |exact_str_match |0.0000|± |0.0000|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2520|± |0.0194|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.1743|± |0.0143|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4200|± |0.0285|
|bigbench_movie_recommendation | 0|multiple_choice_grade|0.2900|± |0.0203|
|bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5430|± |0.0111|
|bigbench_ruin_names | 0|multiple_choice_grade|0.4442|± |0.0235|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2074|± |0.0128|
|bigbench_snarks | 0|multiple_choice_grade|0.5083|± |0.0373|
|bigbench_sports_understanding | 0|multiple_choice_grade|0.4970|± |0.0159|
|bigbench_temporal_sequences | 0|multiple_choice_grade|0.3260|± |0.0148|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2136|± |0.0116|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1326|± |0.0081|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4200|± |0.0285|
```
AGI Eval:
```
| Task |Version| Metric |Value | |Stderr|
|------------------------------|------:|--------|-----:|---|-----:|
|agieval_aqua_rat | 0|acc |0.2283|± |0.0264|
| | |acc_norm|0.2244|± |0.0262|
|agieval_logiqa_en | 0|acc |0.2780|± |0.0176|
| | |acc_norm|0.3164|± |0.0182|
|agieval_lsat_ar | 0|acc |0.2348|± |0.0280|
| | |acc_norm|0.2043|± |0.0266|
|agieval_lsat_lr | 0|acc |0.3392|± |0.0210|
| | |acc_norm|0.2961|± |0.0202|
|agieval_lsat_rc | 0|acc |0.4387|± |0.0303|
| | |acc_norm|0.3569|± |0.0293|
|agieval_sat_en | 0|acc |0.5874|± |0.0344|
| | |acc_norm|0.5194|± |0.0349|
|agieval_sat_en_without_passage| 0|acc |0.4223|± |0.0345|
| | |acc_norm|0.3447|± |0.0332|
|agieval_sat_math | 0|acc |0.3364|± |0.0319|
| | |acc_norm|0.2773|± |0.0302|
``` |