--- base_model: KBLab/bert-base-swedish-cased-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: testThesisSmallSMP results: [] --- # testThesisSmallSMP This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co./KBLab/bert-base-swedish-cased-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3275 - Precision: 0.6826 - Recall: 0.6477 - F1: 0.6647 - Accuracy: 0.8940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 39 | 0.4518 | 0.4107 | 0.2614 | 0.3194 | 0.8555 | | No log | 2.0 | 78 | 0.3469 | 0.6687 | 0.6193 | 0.6431 | 0.8923 | | No log | 3.0 | 117 | 0.3275 | 0.6826 | 0.6477 | 0.6647 | 0.8940 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3