File size: 1,728 Bytes
74ecda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: KBLab/bert-base-swedish-cased-ner
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: testThesisSmallSMP
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# testThesisSmallSMP

This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co./KBLab/bert-base-swedish-cased-ner) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3275
- Precision: 0.6826
- Recall: 0.6477
- F1: 0.6647
- Accuracy: 0.8940

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 39   | 0.4518          | 0.4107    | 0.2614 | 0.3194 | 0.8555   |
| No log        | 2.0   | 78   | 0.3469          | 0.6687    | 0.6193 | 0.6431 | 0.8923   |
| No log        | 3.0   | 117  | 0.3275          | 0.6826    | 0.6477 | 0.6647 | 0.8940   |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3