Upload 14 files
Browse files- README.md +79 -0
- config.json +50 -0
- configuration_chatglm.py +58 -0
- generation_config.json +10 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +291 -0
- modeling_chatglm.py +1064 -0
- special_tokens_map.json +3 -0
- tokenization_chatglm.py +264 -0
- tokenizer.model +3 -0
- tokenizer_config.json +26 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- zh
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- Long Context
|
8 |
+
- chatglm
|
9 |
+
- llama
|
10 |
+
datasets:
|
11 |
+
- THUDM/LongWriter-6k
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
---
|
14 |
+
# LongWriter-glm4-9b
|
15 |
+
|
16 |
+
<p align="center">
|
17 |
+
🤗 <a href="https://huggingface.co/datasets/THUDM/LongWriter-6k" target="_blank">[LongWriter Dataset] </a> • 💻 <a href="https://github.com/THUDM/LongWriter" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/abs/2408.07055" target="_blank">[LongWriter Paper]</a>
|
18 |
+
</p>
|
19 |
+
|
20 |
+
LongWriter-glm4-9b is trained based on [glm-4-9b](https://huggingface.co/THUDM/glm-4-9b), and is capable of generating 10,000+ words at once.
|
21 |
+
|
22 |
+
Environment: Same environment requirement as [glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) (`transforemrs>=4.43.0`).
|
23 |
+
|
24 |
+
A simple demo for deployment of the model:
|
25 |
+
```python
|
26 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
27 |
+
import torch
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b", trust_remote_code=True)
|
29 |
+
model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-glm4-9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
30 |
+
model = model.eval()
|
31 |
+
query = "Write a 10000-word China travel guide"
|
32 |
+
response, history = model.chat(tokenizer, query, history=[], max_new_tokens=32768, temperature=0.5)
|
33 |
+
print(response)
|
34 |
+
```
|
35 |
+
You can also deploy the model with [vllm](https://github.com/vllm-project/vllm), which allows 10,000+ words generation within a minute. Here is an example code:
|
36 |
+
```python
|
37 |
+
from vllm import LLM, SamplingParams
|
38 |
+
model = LLM(
|
39 |
+
model= "THUDM/LongWriter-glm4-9b",
|
40 |
+
dtype="auto",
|
41 |
+
trust_remote_code=True,
|
42 |
+
tensor_parallel_size=1,
|
43 |
+
max_model_len=32768,
|
44 |
+
gpu_memory_utilization=1,
|
45 |
+
)
|
46 |
+
tokenizer = model.get_tokenizer()
|
47 |
+
stop_token_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), tokenizer.get_command("<|observation|>")]
|
48 |
+
generation_params = SamplingParams(
|
49 |
+
temperature=0.5,
|
50 |
+
top_p=0.8,
|
51 |
+
top_k=50,
|
52 |
+
max_tokens=32768,
|
53 |
+
repetition_penalty=1,
|
54 |
+
stop_token_ids=stop_token_ids
|
55 |
+
)
|
56 |
+
query = "Write a 10000-word China travel guide"
|
57 |
+
input_ids = tokenizer.build_chat_input(query, history=[], role='user').input_ids[0].tolist()
|
58 |
+
outputs = model.generate(
|
59 |
+
sampling_params=generation_params,
|
60 |
+
prompt_token_ids=[input_ids],
|
61 |
+
)
|
62 |
+
output = outputs[0]
|
63 |
+
print(output.outputs[0].text)
|
64 |
+
```
|
65 |
+
|
66 |
+
License: [glm-4-9b License](https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE)
|
67 |
+
|
68 |
+
## Citation
|
69 |
+
|
70 |
+
If you find our work useful, please consider citing LongWriter:
|
71 |
+
|
72 |
+
```
|
73 |
+
@article{bai2024longwriter,
|
74 |
+
title={LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs},
|
75 |
+
author={Yushi Bai and Jiajie Zhang and Xin Lv and Linzhi Zheng and Siqi Zhu and Lei Hou and Yuxiao Dong and Jie Tang and Juanzi Li},
|
76 |
+
journal={arXiv preprint arXiv:2408.07055},
|
77 |
+
year={2024}
|
78 |
+
}
|
79 |
+
```
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "THUDM/LongWriter-glm4-9b",
|
3 |
+
"add_bias_linear": false,
|
4 |
+
"add_qkv_bias": true,
|
5 |
+
"apply_query_key_layer_scaling": true,
|
6 |
+
"apply_residual_connection_post_layernorm": false,
|
7 |
+
"architectures": [
|
8 |
+
"ChatGLMForConditionalGeneration"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"attention_softmax_in_fp32": true,
|
12 |
+
"auto_map": {
|
13 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
14 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
15 |
+
"AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
16 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
17 |
+
"AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
|
18 |
+
},
|
19 |
+
"bias_dropout_fusion": true,
|
20 |
+
"classifier_dropout": null,
|
21 |
+
"eos_token_id": [
|
22 |
+
151329,
|
23 |
+
151336,
|
24 |
+
151338
|
25 |
+
],
|
26 |
+
"ffn_hidden_size": 13696,
|
27 |
+
"fp32_residual_connection": false,
|
28 |
+
"hidden_dropout": 0.0,
|
29 |
+
"hidden_size": 4096,
|
30 |
+
"kv_channels": 128,
|
31 |
+
"layernorm_epsilon": 1.5625e-07,
|
32 |
+
"model_type": "chatglm",
|
33 |
+
"multi_query_attention": true,
|
34 |
+
"multi_query_group_num": 2,
|
35 |
+
"num_attention_heads": 32,
|
36 |
+
"num_hidden_layers": 40,
|
37 |
+
"num_layers": 40,
|
38 |
+
"original_rope": true,
|
39 |
+
"pad_token_id": 151329,
|
40 |
+
"padded_vocab_size": 151552,
|
41 |
+
"post_layer_norm": true,
|
42 |
+
"rmsnorm": true,
|
43 |
+
"rope_ratio": 500,
|
44 |
+
"seq_length": 1048576,
|
45 |
+
"tie_word_embeddings": false,
|
46 |
+
"torch_dtype": "bfloat16",
|
47 |
+
"transformers_version": "4.43.0",
|
48 |
+
"use_cache": true,
|
49 |
+
"vocab_size": 151552
|
50 |
+
}
|
configuration_chatglm.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class ChatGLMConfig(PretrainedConfig):
|
5 |
+
model_type = "chatglm"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
num_layers=28,
|
10 |
+
padded_vocab_size=65024,
|
11 |
+
hidden_size=4096,
|
12 |
+
ffn_hidden_size=13696,
|
13 |
+
kv_channels=128,
|
14 |
+
num_attention_heads=32,
|
15 |
+
seq_length=2048,
|
16 |
+
hidden_dropout=0.0,
|
17 |
+
classifier_dropout=None,
|
18 |
+
attention_dropout=0.0,
|
19 |
+
layernorm_epsilon=1e-5,
|
20 |
+
rmsnorm=True,
|
21 |
+
apply_residual_connection_post_layernorm=False,
|
22 |
+
post_layer_norm=True,
|
23 |
+
add_bias_linear=False,
|
24 |
+
add_qkv_bias=False,
|
25 |
+
bias_dropout_fusion=True,
|
26 |
+
multi_query_attention=False,
|
27 |
+
multi_query_group_num=1,
|
28 |
+
rope_ratio=1,
|
29 |
+
apply_query_key_layer_scaling=True,
|
30 |
+
attention_softmax_in_fp32=True,
|
31 |
+
fp32_residual_connection=False,
|
32 |
+
**kwargs
|
33 |
+
):
|
34 |
+
self.num_layers = num_layers
|
35 |
+
self.vocab_size = padded_vocab_size
|
36 |
+
self.padded_vocab_size = padded_vocab_size
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.ffn_hidden_size = ffn_hidden_size
|
39 |
+
self.kv_channels = kv_channels
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
self.seq_length = seq_length
|
42 |
+
self.hidden_dropout = hidden_dropout
|
43 |
+
self.classifier_dropout = classifier_dropout
|
44 |
+
self.attention_dropout = attention_dropout
|
45 |
+
self.layernorm_epsilon = layernorm_epsilon
|
46 |
+
self.rmsnorm = rmsnorm
|
47 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
48 |
+
self.post_layer_norm = post_layer_norm
|
49 |
+
self.add_bias_linear = add_bias_linear
|
50 |
+
self.add_qkv_bias = add_qkv_bias
|
51 |
+
self.bias_dropout_fusion = bias_dropout_fusion
|
52 |
+
self.multi_query_attention = multi_query_attention
|
53 |
+
self.multi_query_group_num = multi_query_group_num
|
54 |
+
self.rope_ratio = rope_ratio
|
55 |
+
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
56 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
57 |
+
self.fp32_residual_connection = fp32_residual_connection
|
58 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": [
|
4 |
+
151329,
|
5 |
+
151336,
|
6 |
+
151338
|
7 |
+
],
|
8 |
+
"pad_token_id": 151329,
|
9 |
+
"transformers_version": "4.43.0"
|
10 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38fcd3e38c291c7b63f7c784de99acf2008ed2b9813dc6cb69c3f5e497dab001
|
3 |
+
size 4984147224
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d4f93dc73feb92a370018365f84dfe9fc0e368576f6f366c8eb5d2736967676
|
3 |
+
size 4895071360
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b3364e4b4f21a8dd4cce49b92cf0749f2d87d4ebcdb8eb96f5b576b7bc9ea3e
|
3 |
+
size 4895071384
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a703a6e77ec1fceca638c89c82901283e5a384313c50c842da9068b3a6e135aa
|
3 |
+
size 4025651256
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 18799902784
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.embedding.word_embeddings.weight": "model-00001-of-00004.safetensors",
|
7 |
+
"transformer.encoder.final_layernorm.weight": "model-00004-of-00004.safetensors",
|
8 |
+
"transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
21 |
+
"transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"transformer.encoder.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
23 |
+
"transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
24 |
+
"transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
25 |
+
"transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
26 |
+
"transformer.encoder.layers.10.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
28 |
+
"transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"transformer.encoder.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"transformer.encoder.layers.11.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
35 |
+
"transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"transformer.encoder.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"transformer.encoder.layers.12.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
42 |
+
"transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"transformer.encoder.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"transformer.encoder.layers.13.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
49 |
+
"transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"transformer.encoder.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"transformer.encoder.layers.14.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
56 |
+
"transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"transformer.encoder.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"transformer.encoder.layers.15.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
63 |
+
"transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"transformer.encoder.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"transformer.encoder.layers.16.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
70 |
+
"transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"transformer.encoder.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"transformer.encoder.layers.17.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"transformer.encoder.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"transformer.encoder.layers.18.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
84 |
+
"transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"transformer.encoder.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"transformer.encoder.layers.19.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
93 |
+
"transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
94 |
+
"transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
95 |
+
"transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
96 |
+
"transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
97 |
+
"transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
98 |
+
"transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
99 |
+
"transformer.encoder.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"transformer.encoder.layers.20.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
105 |
+
"transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"transformer.encoder.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"transformer.encoder.layers.21.self_attention.dense.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
|
112 |
+
"transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"transformer.encoder.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
114 |
+
"transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
115 |
+
"transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
116 |
+
"transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
117 |
+
"transformer.encoder.layers.22.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
119 |
+
"transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"transformer.encoder.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
122 |
+
"transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
124 |
+
"transformer.encoder.layers.23.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
125 |
+
"transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
126 |
+
"transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"transformer.encoder.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"transformer.encoder.layers.24.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
133 |
+
"transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"transformer.encoder.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"transformer.encoder.layers.25.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
140 |
+
"transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"transformer.encoder.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"transformer.encoder.layers.26.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
147 |
+
"transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"transformer.encoder.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"transformer.encoder.layers.27.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
154 |
+
"transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"transformer.encoder.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"transformer.encoder.layers.28.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
161 |
+
"transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"transformer.encoder.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"transformer.encoder.layers.29.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
168 |
+
"transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
170 |
+
"transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
171 |
+
"transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
172 |
+
"transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
173 |
+
"transformer.encoder.layers.3.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
174 |
+
"transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
175 |
+
"transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
176 |
+
"transformer.encoder.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"transformer.encoder.layers.30.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"transformer.encoder.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"transformer.encoder.layers.31.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
189 |
+
"transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"transformer.encoder.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"transformer.encoder.layers.32.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
196 |
+
"transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"transformer.encoder.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
|
199 |
+
"transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
|
200 |
+
"transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"transformer.encoder.layers.33.self_attention.dense.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
|
203 |
+
"transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"transformer.encoder.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
205 |
+
"transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
|
206 |
+
"transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
|
207 |
+
"transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
208 |
+
"transformer.encoder.layers.34.self_attention.dense.weight": "model-00004-of-00004.safetensors",
|
209 |
+
"transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
|
210 |
+
"transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
|
211 |
+
"transformer.encoder.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
212 |
+
"transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
|
213 |
+
"transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
|
214 |
+
"transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
215 |
+
"transformer.encoder.layers.35.self_attention.dense.weight": "model-00004-of-00004.safetensors",
|
216 |
+
"transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
|
217 |
+
"transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
|
218 |
+
"transformer.encoder.layers.36.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
219 |
+
"transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
|
220 |
+
"transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
|
221 |
+
"transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
222 |
+
"transformer.encoder.layers.36.self_attention.dense.weight": "model-00004-of-00004.safetensors",
|
223 |
+
"transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
|
224 |
+
"transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
|
225 |
+
"transformer.encoder.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
226 |
+
"transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
|
227 |
+
"transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
|
228 |
+
"transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
229 |
+
"transformer.encoder.layers.37.self_attention.dense.weight": "model-00004-of-00004.safetensors",
|
230 |
+
"transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
|
231 |
+
"transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
|
232 |
+
"transformer.encoder.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
233 |
+
"transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
|
234 |
+
"transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
|
235 |
+
"transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
236 |
+
"transformer.encoder.layers.38.self_attention.dense.weight": "model-00004-of-00004.safetensors",
|
237 |
+
"transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
|
238 |
+
"transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
|
239 |
+
"transformer.encoder.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
240 |
+
"transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
|
241 |
+
"transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
|
242 |
+
"transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
243 |
+
"transformer.encoder.layers.39.self_attention.dense.weight": "model-00004-of-00004.safetensors",
|
244 |
+
"transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
|
245 |
+
"transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
|
246 |
+
"transformer.encoder.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"transformer.encoder.layers.4.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
252 |
+
"transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"transformer.encoder.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"transformer.encoder.layers.5.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
259 |
+
"transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"transformer.encoder.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"transformer.encoder.layers.6.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"transformer.encoder.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"transformer.encoder.layers.7.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
273 |
+
"transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"transformer.encoder.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"transformer.encoder.layers.8.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
280 |
+
"transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"transformer.encoder.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
|
283 |
+
"transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
|
284 |
+
"transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"transformer.encoder.layers.9.self_attention.dense.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
|
287 |
+
"transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"transformer.output_layer.weight": "model-00004-of-00004.safetensors",
|
289 |
+
"transformer.rotary_pos_emb.inv_freq": "model-00001-of-00004.safetensors"
|
290 |
+
}
|
291 |
+
}
|
modeling_chatglm.py
ADDED
@@ -0,0 +1,1064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
10 |
+
from torch.nn.utils import skip_init
|
11 |
+
from typing import Optional, Tuple, Union, List, Dict, Any
|
12 |
+
|
13 |
+
from transformers.modeling_outputs import (
|
14 |
+
BaseModelOutputWithPast,
|
15 |
+
CausalLMOutputWithPast,
|
16 |
+
SequenceClassifierOutputWithPast,
|
17 |
+
)
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.utils import logging, is_torch_npu_available
|
20 |
+
from transformers.generation.logits_process import LogitsProcessor
|
21 |
+
from transformers.generation.utils import ModelOutput
|
22 |
+
|
23 |
+
from .configuration_chatglm import ChatGLMConfig
|
24 |
+
|
25 |
+
try:
|
26 |
+
from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
|
27 |
+
|
28 |
+
if is_flash_attn_2_available():
|
29 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
30 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
31 |
+
except:
|
32 |
+
pass
|
33 |
+
|
34 |
+
# flags required to enable jit fusion kernels
|
35 |
+
|
36 |
+
if sys.platform != 'darwin' and not is_torch_npu_available():
|
37 |
+
torch._C._jit_set_profiling_mode(False)
|
38 |
+
torch._C._jit_set_profiling_executor(False)
|
39 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
40 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
45 |
+
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
46 |
+
|
47 |
+
|
48 |
+
def default_init(cls, *args, **kwargs):
|
49 |
+
return cls(*args, **kwargs)
|
50 |
+
|
51 |
+
|
52 |
+
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
53 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
54 |
+
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
55 |
+
scores.zero_()
|
56 |
+
scores[..., 198] = 5e4
|
57 |
+
return scores
|
58 |
+
|
59 |
+
|
60 |
+
def split_tensor_along_last_dim(
|
61 |
+
tensor: torch.Tensor,
|
62 |
+
num_partitions: int,
|
63 |
+
contiguous_split_chunks: bool = False,
|
64 |
+
) -> List[torch.Tensor]:
|
65 |
+
"""Split a tensor along its last dimension.
|
66 |
+
Arguments:
|
67 |
+
tensor: input tensor.
|
68 |
+
num_partitions: number of partitions to split the tensor
|
69 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
70 |
+
in memory.
|
71 |
+
Returns:
|
72 |
+
A list of Tensors
|
73 |
+
"""
|
74 |
+
# Get the size and dimension.
|
75 |
+
last_dim = tensor.dim() - 1
|
76 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
77 |
+
# Split.
|
78 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
79 |
+
# Note: torch.split does not create contiguous tensors by default.
|
80 |
+
if contiguous_split_chunks:
|
81 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
82 |
+
|
83 |
+
return tensor_list
|
84 |
+
|
85 |
+
|
86 |
+
class RotaryEmbedding(nn.Module):
|
87 |
+
def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
|
88 |
+
super().__init__()
|
89 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
90 |
+
self.register_buffer("inv_freq", inv_freq)
|
91 |
+
self.dim = dim
|
92 |
+
self.original_impl = original_impl
|
93 |
+
self.rope_ratio = rope_ratio
|
94 |
+
|
95 |
+
def forward_impl(
|
96 |
+
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
|
97 |
+
):
|
98 |
+
"""Enhanced Transformer with Rotary Position Embedding.
|
99 |
+
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
100 |
+
transformers/rope/__init__.py. MIT License:
|
101 |
+
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
102 |
+
"""
|
103 |
+
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
104 |
+
base = base * self.rope_ratio
|
105 |
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
|
106 |
+
|
107 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
108 |
+
seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
|
109 |
+
|
110 |
+
# Calculate the product of position index and $\theta_i$
|
111 |
+
idx_theta = torch.outer(seq_idx, theta).float()
|
112 |
+
|
113 |
+
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
|
114 |
+
|
115 |
+
# this is to mimic the behaviour of complex32, else we will get different results
|
116 |
+
if dtype in (torch.float16, torch.bfloat16, torch.int8):
|
117 |
+
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
|
118 |
+
return cache
|
119 |
+
|
120 |
+
def forward(self, max_seq_len, offset=0):
|
121 |
+
return self.forward_impl(
|
122 |
+
max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
@torch.jit.script
|
127 |
+
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
128 |
+
# x: [b, np, sq, hn]
|
129 |
+
b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
130 |
+
rot_dim = rope_cache.shape[-2] * 2
|
131 |
+
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
132 |
+
# truncate to support variable sizes
|
133 |
+
rope_cache = rope_cache[:, :sq]
|
134 |
+
xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
|
135 |
+
rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
|
136 |
+
x_out2 = torch.stack(
|
137 |
+
[
|
138 |
+
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
139 |
+
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
140 |
+
],
|
141 |
+
-1,
|
142 |
+
)
|
143 |
+
x_out2 = x_out2.flatten(3)
|
144 |
+
return torch.cat((x_out2, x_pass), dim=-1)
|
145 |
+
|
146 |
+
|
147 |
+
class RMSNorm(torch.nn.Module):
|
148 |
+
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
149 |
+
super().__init__()
|
150 |
+
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
151 |
+
self.eps = eps
|
152 |
+
|
153 |
+
def forward(self, hidden_states: torch.Tensor):
|
154 |
+
input_dtype = hidden_states.dtype
|
155 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
156 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
157 |
+
|
158 |
+
return (self.weight * hidden_states).to(input_dtype)
|
159 |
+
|
160 |
+
|
161 |
+
class CoreAttention(torch.nn.Module):
|
162 |
+
def __init__(self, config: ChatGLMConfig, layer_number):
|
163 |
+
super(CoreAttention, self).__init__()
|
164 |
+
self.config = config
|
165 |
+
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
166 |
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
167 |
+
if self.apply_query_key_layer_scaling:
|
168 |
+
self.attention_softmax_in_fp32 = True
|
169 |
+
self.layer_number = max(1, layer_number)
|
170 |
+
self.is_causal = True
|
171 |
+
|
172 |
+
projection_size = config.kv_channels * config.num_attention_heads
|
173 |
+
|
174 |
+
# Per attention head and per partition values.
|
175 |
+
self.hidden_size_per_partition = projection_size
|
176 |
+
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
|
177 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
178 |
+
|
179 |
+
coeff = None
|
180 |
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
181 |
+
if self.apply_query_key_layer_scaling:
|
182 |
+
coeff = self.layer_number
|
183 |
+
self.norm_factor *= coeff
|
184 |
+
self.coeff = coeff
|
185 |
+
|
186 |
+
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
187 |
+
|
188 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
189 |
+
# [b, np, sq, sk]
|
190 |
+
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
191 |
+
|
192 |
+
# [b, np, sq, hn] -> [b * np, sq, hn]
|
193 |
+
query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
|
194 |
+
# [b, np, sk, hn] -> [b * np, sk, hn]
|
195 |
+
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
196 |
+
|
197 |
+
# preallocting input tensor: [b * np, sq, sk]
|
198 |
+
matmul_input_buffer = torch.empty(
|
199 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
200 |
+
device=query_layer.device
|
201 |
+
)
|
202 |
+
|
203 |
+
# Raw attention scores. [b * np, sq, sk]
|
204 |
+
matmul_result = torch.baddbmm(
|
205 |
+
matmul_input_buffer,
|
206 |
+
query_layer, # [b * np, sq, hn]
|
207 |
+
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
208 |
+
beta=0.0,
|
209 |
+
alpha=(1.0 / self.norm_factor),
|
210 |
+
)
|
211 |
+
|
212 |
+
# change view to [b, np, sq, sk]
|
213 |
+
attention_scores = matmul_result.view(*output_size)
|
214 |
+
|
215 |
+
# ===========================
|
216 |
+
# Attention probs and dropout
|
217 |
+
# ===========================
|
218 |
+
|
219 |
+
# attention scores and attention mask [b, np, sq, sk]
|
220 |
+
if self.attention_softmax_in_fp32:
|
221 |
+
attention_scores = attention_scores.float()
|
222 |
+
if self.coeff is not None:
|
223 |
+
attention_scores = attention_scores * self.coeff
|
224 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
225 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
226 |
+
device=attention_scores.device, dtype=torch.bool)
|
227 |
+
attention_mask.tril_()
|
228 |
+
attention_mask = ~attention_mask
|
229 |
+
if attention_mask is not None:
|
230 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
231 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
232 |
+
attention_probs = attention_probs.type_as(value_layer)
|
233 |
+
|
234 |
+
# This is actually dropping out entire tokens to attend to, which might
|
235 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
236 |
+
attention_probs = self.attention_dropout(attention_probs)
|
237 |
+
|
238 |
+
# query layer shape: [b * np, sq, hn]
|
239 |
+
# value layer shape: [b, np, sk, hn]
|
240 |
+
# attention shape: [b, np, sq, sk]
|
241 |
+
# context layer shape: [b, np, sq, hn]
|
242 |
+
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
243 |
+
# change view [b * np, sk, hn]
|
244 |
+
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
245 |
+
# change view [b * np, sq, sk]
|
246 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
247 |
+
# matmul: [b * np, sq, hn]
|
248 |
+
context_layer = torch.bmm(attention_probs, value_layer)
|
249 |
+
# change view [b, np, sq, hn]
|
250 |
+
context_layer = context_layer.view(*output_size)
|
251 |
+
# [b, np, sq, hn] --> [b, sq, np, hn]
|
252 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
253 |
+
# [b, sq, np, hn] --> [b, sq, hp]
|
254 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
255 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
256 |
+
|
257 |
+
return context_layer
|
258 |
+
|
259 |
+
|
260 |
+
class SdpaAttention(CoreAttention):
|
261 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
262 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
263 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
264 |
+
is_causal=True,
|
265 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
266 |
+
else:
|
267 |
+
if attention_mask is not None:
|
268 |
+
attention_mask = ~attention_mask
|
269 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
270 |
+
attention_mask,
|
271 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
272 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
273 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
274 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
275 |
+
return context_layer
|
276 |
+
|
277 |
+
|
278 |
+
def _get_unpad_data(attention_mask):
|
279 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
280 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
281 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
282 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
283 |
+
return (
|
284 |
+
indices,
|
285 |
+
cu_seqlens,
|
286 |
+
max_seqlen_in_batch,
|
287 |
+
)
|
288 |
+
|
289 |
+
|
290 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
|
291 |
+
class FlashAttention2(CoreAttention):
|
292 |
+
def __init__(self, *args, **kwargs):
|
293 |
+
super().__init__(*args, **kwargs)
|
294 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
295 |
+
|
296 |
+
def forward(self, query_states, key_states, value_states, attention_mask):
|
297 |
+
query_states = query_states.transpose(1, 2)
|
298 |
+
key_states = key_states.transpose(1, 2)
|
299 |
+
value_states = value_states.transpose(1, 2)
|
300 |
+
batch_size, query_length = query_states.shape[:2]
|
301 |
+
if not self._flash_attn_uses_top_left_mask:
|
302 |
+
causal = self.is_causal
|
303 |
+
else:
|
304 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
305 |
+
causal = self.is_causal and query_length != 1
|
306 |
+
dropout = self.config.attention_dropout if self.training else 0.0
|
307 |
+
# Contains at least one padding token in the sequence
|
308 |
+
if attention_mask is not None:
|
309 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
310 |
+
query_states, key_states, value_states, attention_mask, query_length
|
311 |
+
)
|
312 |
+
|
313 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
314 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
315 |
+
|
316 |
+
attn_output_unpad = flash_attn_varlen_func(
|
317 |
+
query_states,
|
318 |
+
key_states,
|
319 |
+
value_states,
|
320 |
+
cu_seqlens_q=cu_seqlens_q,
|
321 |
+
cu_seqlens_k=cu_seqlens_k,
|
322 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
323 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
324 |
+
dropout_p=dropout,
|
325 |
+
softmax_scale=None,
|
326 |
+
causal=causal,
|
327 |
+
)
|
328 |
+
|
329 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
330 |
+
else:
|
331 |
+
attn_output = flash_attn_func(
|
332 |
+
query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
|
333 |
+
)
|
334 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
|
335 |
+
return attn_output
|
336 |
+
|
337 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
338 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
339 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
340 |
+
|
341 |
+
key_layer = index_first_axis(
|
342 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
343 |
+
)
|
344 |
+
value_layer = index_first_axis(
|
345 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
346 |
+
)
|
347 |
+
if query_length == kv_seq_len:
|
348 |
+
query_layer = index_first_axis(
|
349 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
|
350 |
+
indices_k
|
351 |
+
)
|
352 |
+
cu_seqlens_q = cu_seqlens_k
|
353 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
354 |
+
indices_q = indices_k
|
355 |
+
elif query_length == 1:
|
356 |
+
max_seqlen_in_batch_q = 1
|
357 |
+
cu_seqlens_q = torch.arange(
|
358 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
359 |
+
) # There is a memcpy here, that is very bad.
|
360 |
+
indices_q = cu_seqlens_q[:-1]
|
361 |
+
query_layer = query_layer.squeeze(1)
|
362 |
+
else:
|
363 |
+
# The -q_len: slice assumes left padding.
|
364 |
+
attention_mask = attention_mask[:, -query_length:]
|
365 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
366 |
+
|
367 |
+
return (
|
368 |
+
query_layer,
|
369 |
+
key_layer,
|
370 |
+
value_layer,
|
371 |
+
indices_q,
|
372 |
+
(cu_seqlens_q, cu_seqlens_k),
|
373 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
374 |
+
)
|
375 |
+
|
376 |
+
|
377 |
+
CORE_ATTENTION_CLASSES = {
|
378 |
+
"eager": CoreAttention,
|
379 |
+
"sdpa": SdpaAttention,
|
380 |
+
"flash_attention_2": FlashAttention2
|
381 |
+
}
|
382 |
+
|
383 |
+
|
384 |
+
class SelfAttention(torch.nn.Module):
|
385 |
+
"""Parallel self-attention layer abstract class.
|
386 |
+
Self-attention layer takes input with size [s, b, h]
|
387 |
+
and returns output of the same size.
|
388 |
+
"""
|
389 |
+
|
390 |
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
391 |
+
super(SelfAttention, self).__init__()
|
392 |
+
self.layer_number = max(1, layer_number)
|
393 |
+
|
394 |
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
395 |
+
|
396 |
+
# Per attention head and per partition values.
|
397 |
+
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
|
398 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
399 |
+
|
400 |
+
self.multi_query_attention = config.multi_query_attention
|
401 |
+
self.qkv_hidden_size = 3 * self.projection_size
|
402 |
+
if self.multi_query_attention:
|
403 |
+
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
404 |
+
self.qkv_hidden_size = (
|
405 |
+
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
406 |
+
)
|
407 |
+
self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
|
408 |
+
bias=config.add_bias_linear or config.add_qkv_bias,
|
409 |
+
device=device, **_config_to_kwargs(config)
|
410 |
+
)
|
411 |
+
|
412 |
+
self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
|
413 |
+
|
414 |
+
# Output.
|
415 |
+
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
416 |
+
device=device, **_config_to_kwargs(config)
|
417 |
+
)
|
418 |
+
|
419 |
+
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
420 |
+
if self.multi_query_attention:
|
421 |
+
num_attention_heads = self.num_multi_query_groups_per_partition
|
422 |
+
else:
|
423 |
+
num_attention_heads = self.num_attention_heads_per_partition
|
424 |
+
return torch.empty(
|
425 |
+
inference_max_sequence_len,
|
426 |
+
batch_size,
|
427 |
+
num_attention_heads,
|
428 |
+
self.hidden_size_per_attention_head,
|
429 |
+
dtype=dtype,
|
430 |
+
device=device,
|
431 |
+
)
|
432 |
+
|
433 |
+
def forward(
|
434 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
435 |
+
):
|
436 |
+
# hidden_states: [b, sq, h]
|
437 |
+
|
438 |
+
# =================================================
|
439 |
+
# Pre-allocate memory for key-values for inference.
|
440 |
+
# =================================================
|
441 |
+
# =====================
|
442 |
+
# Query, Key, and Value
|
443 |
+
# =====================
|
444 |
+
|
445 |
+
# Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
|
446 |
+
mixed_x_layer = self.query_key_value(hidden_states)
|
447 |
+
|
448 |
+
if self.multi_query_attention:
|
449 |
+
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
450 |
+
[
|
451 |
+
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
452 |
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
453 |
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
454 |
+
],
|
455 |
+
dim=-1,
|
456 |
+
)
|
457 |
+
query_layer = query_layer.view(
|
458 |
+
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
459 |
+
)
|
460 |
+
key_layer = key_layer.view(
|
461 |
+
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
462 |
+
)
|
463 |
+
value_layer = value_layer.view(
|
464 |
+
value_layer.size()[:-1]
|
465 |
+
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
466 |
+
)
|
467 |
+
else:
|
468 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
469 |
+
(self.num_attention_heads_per_partition,
|
470 |
+
3 * self.hidden_size_per_attention_head)
|
471 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
472 |
+
|
473 |
+
# [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
|
474 |
+
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
475 |
+
|
476 |
+
# [b, sq, np, hn] -> [b, np, sq, hn]
|
477 |
+
query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
|
478 |
+
|
479 |
+
# apply relative positional encoding (rotary embedding)
|
480 |
+
if rotary_pos_emb is not None:
|
481 |
+
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
482 |
+
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
483 |
+
|
484 |
+
# adjust key and value for inference
|
485 |
+
if kv_cache is not None:
|
486 |
+
cache_k, cache_v = kv_cache
|
487 |
+
key_layer = torch.cat((cache_k, key_layer), dim=2)
|
488 |
+
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
489 |
+
if use_cache:
|
490 |
+
if kv_cache is None:
|
491 |
+
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
492 |
+
dim=1)
|
493 |
+
else:
|
494 |
+
kv_cache = (key_layer, value_layer)
|
495 |
+
else:
|
496 |
+
kv_cache = None
|
497 |
+
|
498 |
+
if self.multi_query_attention:
|
499 |
+
key_layer = key_layer.unsqueeze(2)
|
500 |
+
key_layer = key_layer.expand(
|
501 |
+
-1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
|
502 |
+
)
|
503 |
+
key_layer = key_layer.contiguous().view(
|
504 |
+
key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
|
505 |
+
)
|
506 |
+
value_layer = value_layer.unsqueeze(2)
|
507 |
+
value_layer = value_layer.expand(
|
508 |
+
-1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
|
509 |
+
)
|
510 |
+
value_layer = value_layer.contiguous().view(
|
511 |
+
value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
|
512 |
+
)
|
513 |
+
|
514 |
+
# ==================================
|
515 |
+
# core attention computation
|
516 |
+
# ==================================
|
517 |
+
|
518 |
+
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
519 |
+
|
520 |
+
# =================
|
521 |
+
# Output. [sq, b, h]
|
522 |
+
# =================
|
523 |
+
|
524 |
+
output = self.dense(context_layer)
|
525 |
+
|
526 |
+
return output, kv_cache
|
527 |
+
|
528 |
+
|
529 |
+
def _config_to_kwargs(args):
|
530 |
+
common_kwargs = {
|
531 |
+
"dtype": args.torch_dtype,
|
532 |
+
}
|
533 |
+
return common_kwargs
|
534 |
+
|
535 |
+
|
536 |
+
class MLP(torch.nn.Module):
|
537 |
+
"""MLP.
|
538 |
+
MLP will take the input with h hidden state, project it to 4*h
|
539 |
+
hidden dimension, perform nonlinear transformation, and project the
|
540 |
+
state back into h hidden dimension.
|
541 |
+
"""
|
542 |
+
|
543 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
544 |
+
super(MLP, self).__init__()
|
545 |
+
|
546 |
+
self.add_bias = config.add_bias_linear
|
547 |
+
|
548 |
+
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
549 |
+
self.dense_h_to_4h = nn.Linear(
|
550 |
+
config.hidden_size,
|
551 |
+
config.ffn_hidden_size * 2,
|
552 |
+
bias=self.add_bias,
|
553 |
+
device=device,
|
554 |
+
**_config_to_kwargs(config)
|
555 |
+
)
|
556 |
+
|
557 |
+
def swiglu(x):
|
558 |
+
x = torch.chunk(x, 2, dim=-1)
|
559 |
+
return F.silu(x[0]) * x[1]
|
560 |
+
|
561 |
+
self.activation_func = swiglu
|
562 |
+
|
563 |
+
# Project back to h.
|
564 |
+
self.dense_4h_to_h = nn.Linear(
|
565 |
+
config.ffn_hidden_size,
|
566 |
+
config.hidden_size,
|
567 |
+
bias=self.add_bias,
|
568 |
+
device=device,
|
569 |
+
**_config_to_kwargs(config)
|
570 |
+
)
|
571 |
+
|
572 |
+
def forward(self, hidden_states):
|
573 |
+
# [s, b, 4hp]
|
574 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
575 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
576 |
+
# [s, b, h]
|
577 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
578 |
+
return output
|
579 |
+
|
580 |
+
|
581 |
+
class GLMBlock(torch.nn.Module):
|
582 |
+
"""A single transformer layer.
|
583 |
+
Transformer layer takes input with size [s, b, h] and returns an
|
584 |
+
output of the same size.
|
585 |
+
"""
|
586 |
+
|
587 |
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
588 |
+
super(GLMBlock, self).__init__()
|
589 |
+
self.layer_number = layer_number
|
590 |
+
|
591 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
592 |
+
|
593 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
594 |
+
|
595 |
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
596 |
+
# Layernorm on the input data.
|
597 |
+
self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
598 |
+
dtype=config.torch_dtype)
|
599 |
+
|
600 |
+
# Self attention.
|
601 |
+
self.self_attention = SelfAttention(config, layer_number, device=device)
|
602 |
+
self.hidden_dropout = config.hidden_dropout
|
603 |
+
|
604 |
+
# Layernorm on the attention output
|
605 |
+
self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
606 |
+
dtype=config.torch_dtype)
|
607 |
+
|
608 |
+
# MLP
|
609 |
+
self.mlp = MLP(config, device=device)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
|
613 |
+
):
|
614 |
+
# hidden_states: [s, b, h]
|
615 |
+
|
616 |
+
# Layer norm at the beginning of the transformer layer.
|
617 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
618 |
+
# Self attention.
|
619 |
+
attention_output, kv_cache = self.self_attention(
|
620 |
+
layernorm_output,
|
621 |
+
attention_mask,
|
622 |
+
rotary_pos_emb,
|
623 |
+
kv_cache=kv_cache,
|
624 |
+
use_cache=use_cache
|
625 |
+
)
|
626 |
+
|
627 |
+
# Residual connection.
|
628 |
+
if self.apply_residual_connection_post_layernorm:
|
629 |
+
residual = layernorm_output
|
630 |
+
else:
|
631 |
+
residual = hidden_states
|
632 |
+
|
633 |
+
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
634 |
+
layernorm_input = residual + layernorm_input
|
635 |
+
|
636 |
+
# Layer norm post the self attention.
|
637 |
+
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
638 |
+
|
639 |
+
# MLP.
|
640 |
+
mlp_output = self.mlp(layernorm_output)
|
641 |
+
|
642 |
+
# Second residual connection.
|
643 |
+
if self.apply_residual_connection_post_layernorm:
|
644 |
+
residual = layernorm_output
|
645 |
+
else:
|
646 |
+
residual = layernorm_input
|
647 |
+
|
648 |
+
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
649 |
+
output = residual + output
|
650 |
+
|
651 |
+
return output, kv_cache
|
652 |
+
|
653 |
+
|
654 |
+
class GLMTransformer(torch.nn.Module):
|
655 |
+
"""Transformer class."""
|
656 |
+
|
657 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
658 |
+
super(GLMTransformer, self).__init__()
|
659 |
+
|
660 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
661 |
+
self.post_layer_norm = config.post_layer_norm
|
662 |
+
|
663 |
+
# Number of layers.
|
664 |
+
self.num_layers = config.num_layers
|
665 |
+
|
666 |
+
# Transformer layers.
|
667 |
+
def build_layer(layer_number):
|
668 |
+
return GLMBlock(config, layer_number, device=device)
|
669 |
+
|
670 |
+
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
|
671 |
+
|
672 |
+
if self.post_layer_norm:
|
673 |
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
674 |
+
# Final layer norm before output.
|
675 |
+
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
676 |
+
dtype=config.torch_dtype)
|
677 |
+
|
678 |
+
self.gradient_checkpointing = False
|
679 |
+
|
680 |
+
def _get_layer(self, layer_number):
|
681 |
+
return self.layers[layer_number]
|
682 |
+
|
683 |
+
def forward(
|
684 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
|
685 |
+
use_cache: Optional[bool] = True,
|
686 |
+
output_hidden_states: Optional[bool] = False,
|
687 |
+
):
|
688 |
+
if not kv_caches:
|
689 |
+
kv_caches = [None for _ in range(self.num_layers)]
|
690 |
+
presents = () if use_cache else None
|
691 |
+
if self.gradient_checkpointing and self.training:
|
692 |
+
if use_cache:
|
693 |
+
logger.warning_once(
|
694 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
695 |
+
)
|
696 |
+
use_cache = False
|
697 |
+
|
698 |
+
all_self_attentions = None
|
699 |
+
all_hidden_states = () if output_hidden_states else None
|
700 |
+
for index in range(self.num_layers):
|
701 |
+
if output_hidden_states:
|
702 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
703 |
+
|
704 |
+
layer = self._get_layer(index)
|
705 |
+
if self.gradient_checkpointing and self.training:
|
706 |
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
707 |
+
layer,
|
708 |
+
hidden_states,
|
709 |
+
attention_mask,
|
710 |
+
rotary_pos_emb,
|
711 |
+
kv_caches[index],
|
712 |
+
use_cache,
|
713 |
+
use_reentrant=False
|
714 |
+
)
|
715 |
+
else:
|
716 |
+
layer_ret = layer(
|
717 |
+
hidden_states,
|
718 |
+
attention_mask,
|
719 |
+
rotary_pos_emb,
|
720 |
+
kv_cache=kv_caches[index],
|
721 |
+
use_cache=use_cache
|
722 |
+
)
|
723 |
+
hidden_states, kv_cache = layer_ret
|
724 |
+
if use_cache:
|
725 |
+
# token by token decoding, use tuple format
|
726 |
+
if kv_caches[0] is not None:
|
727 |
+
presents = presents + (kv_cache,)
|
728 |
+
# prefilling in decoding, use tensor format to save cuda memory
|
729 |
+
else:
|
730 |
+
if len(presents) == 0:
|
731 |
+
presents = kv_cache
|
732 |
+
else:
|
733 |
+
presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
|
734 |
+
|
735 |
+
if output_hidden_states:
|
736 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
737 |
+
|
738 |
+
# Final layer norm.
|
739 |
+
if self.post_layer_norm:
|
740 |
+
hidden_states = self.final_layernorm(hidden_states)
|
741 |
+
|
742 |
+
return hidden_states, presents, all_hidden_states, all_self_attentions
|
743 |
+
|
744 |
+
|
745 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
746 |
+
"""
|
747 |
+
An abstract class to handle weights initialization and
|
748 |
+
a simple interface for downloading and loading pretrained models.
|
749 |
+
"""
|
750 |
+
|
751 |
+
is_parallelizable = False
|
752 |
+
supports_gradient_checkpointing = True
|
753 |
+
config_class = ChatGLMConfig
|
754 |
+
base_model_prefix = "transformer"
|
755 |
+
_no_split_modules = ["GLMBlock"]
|
756 |
+
_supports_flash_attn_2 = True
|
757 |
+
_supports_sdpa = True
|
758 |
+
|
759 |
+
def _init_weights(self, module: nn.Module):
|
760 |
+
"""Initialize the weights."""
|
761 |
+
return
|
762 |
+
|
763 |
+
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
764 |
+
if self.config._attn_implementation == "flash_attention_2":
|
765 |
+
if padding_mask is not None and not padding_mask.all():
|
766 |
+
return padding_mask
|
767 |
+
return None
|
768 |
+
batch_size, seq_length = input_ids.shape
|
769 |
+
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
770 |
+
full_attention_mask.tril_()
|
771 |
+
past_length = 0
|
772 |
+
if past_key_values:
|
773 |
+
past_length = past_key_values[0][0].shape[2]
|
774 |
+
if past_length:
|
775 |
+
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
|
776 |
+
device=input_ids.device), full_attention_mask), dim=-1)
|
777 |
+
if padding_mask is not None:
|
778 |
+
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
779 |
+
if not past_length and padding_mask is not None:
|
780 |
+
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
781 |
+
full_attention_mask = (full_attention_mask < 0.5).bool()
|
782 |
+
full_attention_mask.unsqueeze_(1)
|
783 |
+
return full_attention_mask
|
784 |
+
|
785 |
+
def get_position_ids(self, input_ids, device):
|
786 |
+
batch_size, seq_length = input_ids.shape
|
787 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
788 |
+
return position_ids
|
789 |
+
|
790 |
+
class Embedding(torch.nn.Module):
|
791 |
+
"""Language model embeddings."""
|
792 |
+
|
793 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
794 |
+
super(Embedding, self).__init__()
|
795 |
+
|
796 |
+
self.hidden_size = config.hidden_size
|
797 |
+
# Word embeddings (parallel).
|
798 |
+
self.word_embeddings = nn.Embedding(
|
799 |
+
config.padded_vocab_size,
|
800 |
+
self.hidden_size,
|
801 |
+
dtype=config.torch_dtype,
|
802 |
+
device=device
|
803 |
+
)
|
804 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
805 |
+
|
806 |
+
def forward(self, input_ids):
|
807 |
+
# Embeddings.
|
808 |
+
words_embeddings = self.word_embeddings(input_ids)
|
809 |
+
embeddings = words_embeddings
|
810 |
+
# If the input flag for fp32 residual connection is set, convert for float.
|
811 |
+
if self.fp32_residual_connection:
|
812 |
+
embeddings = embeddings.float()
|
813 |
+
return embeddings
|
814 |
+
|
815 |
+
|
816 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
817 |
+
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
818 |
+
super().__init__(config)
|
819 |
+
if empty_init:
|
820 |
+
init_method = skip_init
|
821 |
+
else:
|
822 |
+
init_method = default_init
|
823 |
+
init_kwargs = {}
|
824 |
+
if device is not None:
|
825 |
+
init_kwargs["device"] = device
|
826 |
+
self.embedding = init_method(Embedding, config, **init_kwargs)
|
827 |
+
self.num_layers = config.num_layers
|
828 |
+
self.multi_query_group_num = config.multi_query_group_num
|
829 |
+
self.kv_channels = config.kv_channels
|
830 |
+
|
831 |
+
# Rotary positional embeddings
|
832 |
+
self.seq_length = config.seq_length
|
833 |
+
rotary_dim = (
|
834 |
+
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
835 |
+
)
|
836 |
+
|
837 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
|
838 |
+
original_impl=config.original_rope,
|
839 |
+
device=device, dtype=config.torch_dtype)
|
840 |
+
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
841 |
+
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
842 |
+
dtype=config.torch_dtype, **init_kwargs)
|
843 |
+
|
844 |
+
def get_input_embeddings(self):
|
845 |
+
return self.embedding.word_embeddings
|
846 |
+
|
847 |
+
def set_input_embeddings(self, value):
|
848 |
+
self.embedding.word_embeddings = value
|
849 |
+
|
850 |
+
def forward(
|
851 |
+
self,
|
852 |
+
input_ids,
|
853 |
+
position_ids: Optional[torch.Tensor] = None,
|
854 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
855 |
+
full_attention_mask: Optional[torch.BoolTensor] = None,
|
856 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
857 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
858 |
+
use_cache: Optional[bool] = None,
|
859 |
+
output_attentions: Optional[bool] = None,
|
860 |
+
output_hidden_states: Optional[bool] = None,
|
861 |
+
return_dict: Optional[bool] = None,
|
862 |
+
):
|
863 |
+
output_hidden_states = (
|
864 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
865 |
+
)
|
866 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
867 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
868 |
+
|
869 |
+
batch_size, seq_length = input_ids.shape
|
870 |
+
|
871 |
+
if inputs_embeds is None:
|
872 |
+
inputs_embeds = self.embedding(input_ids)
|
873 |
+
|
874 |
+
if full_attention_mask is None:
|
875 |
+
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
876 |
+
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
877 |
+
|
878 |
+
# Rotary positional embeddings
|
879 |
+
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
880 |
+
if position_ids is not None:
|
881 |
+
rotary_pos_emb = rotary_pos_emb[position_ids]
|
882 |
+
else:
|
883 |
+
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
884 |
+
|
885 |
+
# Run encoder.
|
886 |
+
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
887 |
+
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
|
888 |
+
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
889 |
+
)
|
890 |
+
if presents is not None and type(presents) is torch.Tensor:
|
891 |
+
presents = presents.split(1, dim=0)
|
892 |
+
presents = list(presents)
|
893 |
+
presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
|
894 |
+
presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
|
895 |
+
presents = tuple(presents)
|
896 |
+
|
897 |
+
if not return_dict:
|
898 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
899 |
+
|
900 |
+
return BaseModelOutputWithPast(
|
901 |
+
last_hidden_state=hidden_states,
|
902 |
+
past_key_values=presents,
|
903 |
+
hidden_states=all_hidden_states,
|
904 |
+
attentions=all_self_attentions,
|
905 |
+
)
|
906 |
+
|
907 |
+
|
908 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
909 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
910 |
+
super().__init__(config)
|
911 |
+
|
912 |
+
self.max_sequence_length = config.max_length
|
913 |
+
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
914 |
+
self.config = config
|
915 |
+
|
916 |
+
def _update_model_kwargs_for_generation(
|
917 |
+
self,
|
918 |
+
outputs: ModelOutput,
|
919 |
+
model_kwargs: Dict[str, Any],
|
920 |
+
is_encoder_decoder: bool = False,
|
921 |
+
) -> Dict[str, Any]:
|
922 |
+
# update past_key_values
|
923 |
+
cache_name, cache = self._extract_past_from_model_output(outputs)
|
924 |
+
model_kwargs[cache_name] = cache
|
925 |
+
|
926 |
+
# update attention mask
|
927 |
+
if "attention_mask" in model_kwargs:
|
928 |
+
attention_mask = model_kwargs["attention_mask"]
|
929 |
+
model_kwargs["attention_mask"] = torch.cat(
|
930 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
931 |
+
)
|
932 |
+
|
933 |
+
# update position ids
|
934 |
+
if "position_ids" in model_kwargs:
|
935 |
+
position_ids = model_kwargs["position_ids"]
|
936 |
+
new_position_id = position_ids[..., -1:].clone()
|
937 |
+
new_position_id += 1
|
938 |
+
model_kwargs["position_ids"] = torch.cat(
|
939 |
+
[position_ids, new_position_id], dim=-1
|
940 |
+
)
|
941 |
+
|
942 |
+
model_kwargs["is_first_forward"] = False
|
943 |
+
return model_kwargs
|
944 |
+
|
945 |
+
def prepare_inputs_for_generation(
|
946 |
+
self,
|
947 |
+
input_ids: torch.LongTensor,
|
948 |
+
past_key_values: Optional[torch.Tensor] = None,
|
949 |
+
attention_mask: Optional[torch.Tensor] = None,
|
950 |
+
position_ids: Optional[torch.Tensor] = None,
|
951 |
+
use_cache: Optional[bool] = None,
|
952 |
+
is_first_forward: bool = True,
|
953 |
+
**kwargs
|
954 |
+
) -> dict:
|
955 |
+
# only last token for input_ids if past is not None
|
956 |
+
if position_ids is None:
|
957 |
+
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
|
958 |
+
if not is_first_forward:
|
959 |
+
if past_key_values is not None:
|
960 |
+
position_ids = position_ids[..., -1:]
|
961 |
+
input_ids = input_ids[:, -1:]
|
962 |
+
return {
|
963 |
+
"input_ids": input_ids,
|
964 |
+
"past_key_values": past_key_values,
|
965 |
+
"position_ids": position_ids,
|
966 |
+
"attention_mask": attention_mask,
|
967 |
+
"return_last_logit": True,
|
968 |
+
"use_cache": use_cache
|
969 |
+
}
|
970 |
+
|
971 |
+
def forward(
|
972 |
+
self,
|
973 |
+
input_ids: Optional[torch.Tensor] = None,
|
974 |
+
position_ids: Optional[torch.Tensor] = None,
|
975 |
+
attention_mask: Optional[torch.Tensor] = None,
|
976 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
977 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
978 |
+
labels: Optional[torch.Tensor] = None,
|
979 |
+
use_cache: Optional[bool] = None,
|
980 |
+
output_attentions: Optional[bool] = None,
|
981 |
+
output_hidden_states: Optional[bool] = None,
|
982 |
+
return_dict: Optional[bool] = None,
|
983 |
+
return_last_logit: Optional[bool] = False,
|
984 |
+
):
|
985 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
986 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
987 |
+
|
988 |
+
transformer_outputs = self.transformer(
|
989 |
+
input_ids=input_ids,
|
990 |
+
position_ids=position_ids,
|
991 |
+
attention_mask=attention_mask,
|
992 |
+
past_key_values=past_key_values,
|
993 |
+
inputs_embeds=inputs_embeds,
|
994 |
+
use_cache=use_cache,
|
995 |
+
output_hidden_states=output_hidden_states,
|
996 |
+
return_dict=return_dict,
|
997 |
+
)
|
998 |
+
|
999 |
+
hidden_states = transformer_outputs[0]
|
1000 |
+
if return_last_logit:
|
1001 |
+
hidden_states = hidden_states[:, -1:]
|
1002 |
+
lm_logits = self.transformer.output_layer(hidden_states)
|
1003 |
+
|
1004 |
+
loss = None
|
1005 |
+
if labels is not None:
|
1006 |
+
lm_logits = lm_logits.to(torch.float32)
|
1007 |
+
|
1008 |
+
# Shift so that tokens < n predict n
|
1009 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1010 |
+
shift_labels = labels[..., 1:].contiguous()
|
1011 |
+
# Flatten the tokens
|
1012 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1013 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1014 |
+
|
1015 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
1016 |
+
loss = loss.to(hidden_states.dtype)
|
1017 |
+
|
1018 |
+
if not return_dict:
|
1019 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1020 |
+
return ((loss,) + output) if loss is not None else output
|
1021 |
+
|
1022 |
+
return CausalLMOutputWithPast(
|
1023 |
+
loss=loss,
|
1024 |
+
logits=lm_logits,
|
1025 |
+
past_key_values=transformer_outputs.past_key_values,
|
1026 |
+
hidden_states=transformer_outputs.hidden_states,
|
1027 |
+
attentions=transformer_outputs.attentions,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
@staticmethod
|
1031 |
+
def _reorder_cache(
|
1032 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1033 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1034 |
+
"""
|
1035 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1036 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1037 |
+
beam_idx at every generation step.
|
1038 |
+
Output shares the same memory storage as `past`.
|
1039 |
+
"""
|
1040 |
+
return tuple(
|
1041 |
+
(
|
1042 |
+
layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
|
1043 |
+
layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
|
1044 |
+
)
|
1045 |
+
for layer_past in past
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
@torch.inference_mode()
|
1049 |
+
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
1050 |
+
max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8,
|
1051 |
+
**kwargs):
|
1052 |
+
if history is None:
|
1053 |
+
history = []
|
1054 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1055 |
+
"temperature": temperature, **kwargs}
|
1056 |
+
inputs = tokenizer.build_chat_input(query, history=history, role=role)
|
1057 |
+
inputs = inputs.to(self.device)
|
1058 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
|
1059 |
+
tokenizer.get_command("<|observation|>")]
|
1060 |
+
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
|
1061 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1062 |
+
response = tokenizer.decode(outputs)
|
1063 |
+
history.append({"role": role, "content": query})
|
1064 |
+
return response, history
|
special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": "<|endoftext|>"
|
3 |
+
}
|
tokenization_chatglm.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import regex as re
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import tiktoken
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
from typing import List, Optional, Union, Dict
|
8 |
+
from transformers import PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging, PaddingStrategy
|
10 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
11 |
+
|
12 |
+
|
13 |
+
class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
14 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
15 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
vocab_file,
|
20 |
+
padding_side="left",
|
21 |
+
clean_up_tokenization_spaces=False,
|
22 |
+
encode_special_tokens=False,
|
23 |
+
**kwargs
|
24 |
+
):
|
25 |
+
self.name = "GLMTokenizer"
|
26 |
+
self.vocab_file = vocab_file
|
27 |
+
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
28 |
+
self.pat_str = re.compile(pat_str)
|
29 |
+
self.encode_special_tokens = encode_special_tokens
|
30 |
+
|
31 |
+
mergeable_ranks = {}
|
32 |
+
with open(vocab_file) as f:
|
33 |
+
for line in f:
|
34 |
+
token, rank = line.strip().split()
|
35 |
+
rank = int(rank)
|
36 |
+
token = base64.b64decode(token)
|
37 |
+
mergeable_ranks[token] = rank
|
38 |
+
|
39 |
+
self.mergeable_ranks = mergeable_ranks
|
40 |
+
self.special_tokens = ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
|
41 |
+
"<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
|
42 |
+
"<|begin_of_video|>", "<|end_of_video|>"]
|
43 |
+
|
44 |
+
self.special_tokens = {
|
45 |
+
token: idx for idx, token in enumerate(self.special_tokens, start=len(mergeable_ranks))
|
46 |
+
}
|
47 |
+
self.special_token_ids = {idx: token for token, idx in self.special_tokens.items()}
|
48 |
+
|
49 |
+
self.tokenizer = tiktoken.Encoding(
|
50 |
+
name="my_tokenizer",
|
51 |
+
pat_str=pat_str,
|
52 |
+
mergeable_ranks=mergeable_ranks,
|
53 |
+
special_tokens=self.special_tokens
|
54 |
+
)
|
55 |
+
self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
|
56 |
+
self.n_words = len(self.decoder) + len(self.special_tokens)
|
57 |
+
|
58 |
+
super().__init__(
|
59 |
+
padding_side=padding_side,
|
60 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
61 |
+
**kwargs
|
62 |
+
)
|
63 |
+
|
64 |
+
def get_command(self, token):
|
65 |
+
assert token in self.special_tokens
|
66 |
+
return self.special_tokens[token]
|
67 |
+
|
68 |
+
@property
|
69 |
+
def vocab_size(self):
|
70 |
+
return self.n_words
|
71 |
+
|
72 |
+
@property
|
73 |
+
def eos_token_id(self):
|
74 |
+
return self.get_command("<|endoftext|>")
|
75 |
+
|
76 |
+
def get_vocab(self):
|
77 |
+
""" Returns vocab as a dict """
|
78 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
79 |
+
vocab.update(self.added_tokens_encoder)
|
80 |
+
return vocab
|
81 |
+
|
82 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
83 |
+
"""
|
84 |
+
Converts a sequence of tokens in a single string.
|
85 |
+
"""
|
86 |
+
text = ""
|
87 |
+
temp = b""
|
88 |
+
for t in tokens:
|
89 |
+
if isinstance(t, str):
|
90 |
+
if temp:
|
91 |
+
text += temp.decode("utf-8", errors="replace")
|
92 |
+
temp = b""
|
93 |
+
text += t
|
94 |
+
elif isinstance(t, bytes):
|
95 |
+
temp += t
|
96 |
+
else:
|
97 |
+
raise TypeError("token should only be of type types or str")
|
98 |
+
if temp:
|
99 |
+
text += temp.decode("utf-8", errors="replace")
|
100 |
+
return text
|
101 |
+
|
102 |
+
def _tokenize(self, text, **kwargs):
|
103 |
+
tokens = []
|
104 |
+
if self.encode_special_tokens:
|
105 |
+
ids = self.tokenizer.encode(text, allowed_special="all")
|
106 |
+
else:
|
107 |
+
ids = self.tokenizer.encode(text, disallowed_special=())
|
108 |
+
for t in ids:
|
109 |
+
tokens.append(self.decoder[t])
|
110 |
+
return tokens
|
111 |
+
|
112 |
+
def _convert_token_to_id(self, token):
|
113 |
+
""" Converts a token (str) in an id using the vocab. """
|
114 |
+
if token in self.special_tokens:
|
115 |
+
return self.special_tokens[token]
|
116 |
+
return self.mergeable_ranks[token]
|
117 |
+
|
118 |
+
def _convert_id_to_token(self, index):
|
119 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
120 |
+
if index in self.special_token_ids:
|
121 |
+
return self.special_token_ids[index]
|
122 |
+
return self.decoder[index]
|
123 |
+
|
124 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
125 |
+
"""
|
126 |
+
Save the vocabulary and special tokens file to a directory.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
save_directory (`str`):
|
130 |
+
The directory in which to save the vocabulary.
|
131 |
+
filename_prefix (`str`, *optional*):
|
132 |
+
An optional prefix to add to the named of the saved files.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
`Tuple(str)`: Paths to the files saved.
|
136 |
+
"""
|
137 |
+
if os.path.isdir(save_directory):
|
138 |
+
vocab_file = os.path.join(
|
139 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
vocab_file = save_directory
|
143 |
+
|
144 |
+
with open(self.vocab_file, 'rb') as fin:
|
145 |
+
proto_str = fin.read()
|
146 |
+
|
147 |
+
with open(vocab_file, "wb") as writer:
|
148 |
+
writer.write(proto_str)
|
149 |
+
|
150 |
+
return (vocab_file,)
|
151 |
+
|
152 |
+
def get_prefix_tokens(self):
|
153 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("<sop>")]
|
154 |
+
return prefix_tokens
|
155 |
+
|
156 |
+
def build_single_message(self, role, metadata, message):
|
157 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
158 |
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
159 |
+
message_tokens = self.tokenizer.encode(message, disallowed_special=())
|
160 |
+
tokens = role_tokens + message_tokens
|
161 |
+
return tokens
|
162 |
+
|
163 |
+
def build_chat_input(self, query, history=None, role="user"):
|
164 |
+
if history is None:
|
165 |
+
history = []
|
166 |
+
input_ids = []
|
167 |
+
for item in history:
|
168 |
+
content = item["content"]
|
169 |
+
if item["role"] == "system" and "tools" in item:
|
170 |
+
for function in item["tools"]:
|
171 |
+
content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
|
172 |
+
content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
|
173 |
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
174 |
+
input_ids.extend(self.build_single_message(role, "", query))
|
175 |
+
input_ids.extend([self.get_command("<|assistant|>")])
|
176 |
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
177 |
+
|
178 |
+
def build_inputs_with_special_tokens(
|
179 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
180 |
+
) -> List[int]:
|
181 |
+
"""
|
182 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
183 |
+
adding special tokens. A BERT sequence has the following format:
|
184 |
+
|
185 |
+
- single sequence: `[CLS] X [SEP]`
|
186 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
187 |
+
|
188 |
+
Args:
|
189 |
+
token_ids_0 (`List[int]`):
|
190 |
+
List of IDs to which the special tokens will be added.
|
191 |
+
token_ids_1 (`List[int]`, *optional*):
|
192 |
+
Optional second list of IDs for sequence pairs.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
196 |
+
"""
|
197 |
+
prefix_tokens = self.get_prefix_tokens()
|
198 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
199 |
+
if token_ids_1 is not None:
|
200 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
201 |
+
return token_ids_0
|
202 |
+
|
203 |
+
def _pad(
|
204 |
+
self,
|
205 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
206 |
+
max_length: Optional[int] = None,
|
207 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
208 |
+
pad_to_multiple_of: Optional[int] = None,
|
209 |
+
return_attention_mask: Optional[bool] = None,
|
210 |
+
) -> dict:
|
211 |
+
"""
|
212 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
213 |
+
|
214 |
+
Args:
|
215 |
+
encoded_inputs:
|
216 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
217 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
218 |
+
Will truncate by taking into account the special tokens.
|
219 |
+
padding_strategy: PaddingStrategy to use for padding.
|
220 |
+
|
221 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
222 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
223 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
224 |
+
The tokenizer padding sides are defined in self.padding_side:
|
225 |
+
|
226 |
+
- 'left': pads on the left of the sequences
|
227 |
+
- 'right': pads on the right of the sequences
|
228 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
229 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
230 |
+
`>= 7.5` (Volta).
|
231 |
+
return_attention_mask:
|
232 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
233 |
+
"""
|
234 |
+
# Load from model defaults
|
235 |
+
assert self.padding_side == "left"
|
236 |
+
|
237 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
238 |
+
seq_length = len(required_input)
|
239 |
+
|
240 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
241 |
+
max_length = len(required_input)
|
242 |
+
|
243 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
244 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
245 |
+
|
246 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
247 |
+
|
248 |
+
# Initialize attention mask if not present.
|
249 |
+
if "attention_mask" not in encoded_inputs:
|
250 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
251 |
+
|
252 |
+
if "position_ids" not in encoded_inputs:
|
253 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
254 |
+
|
255 |
+
if needs_to_be_padded:
|
256 |
+
difference = max_length - len(required_input)
|
257 |
+
|
258 |
+
if "attention_mask" in encoded_inputs:
|
259 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
260 |
+
if "position_ids" in encoded_inputs:
|
261 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
262 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
263 |
+
|
264 |
+
return encoded_inputs
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
|
3 |
+
size 2623634
|
tokenizer_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"151329": {
|
4 |
+
"content": "<|endoftext|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"auto_map": {
|
13 |
+
"AutoTokenizer": [
|
14 |
+
"tokenization_chatglm.ChatGLM4Tokenizer",
|
15 |
+
null
|
16 |
+
]
|
17 |
+
},
|
18 |
+
"chat_template": "{% for message in messages %}{% if loop.first %}[gMASK]sop<|{{ message['role'] }}|>\n {{ message['content'] }}{% else %}<|{{ message['role'] }}|>\n {{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
|
19 |
+
"clean_up_tokenization_spaces": false,
|
20 |
+
"do_lower_case": false,
|
21 |
+
"eos_token": "<|endoftext|>",
|
22 |
+
"model_max_length": 1000000000000000019884624838656,
|
23 |
+
"padding_side": "left",
|
24 |
+
"remove_space": false,
|
25 |
+
"tokenizer_class": "ChatGLM4Tokenizer"
|
26 |
+
}
|