--- license: apache-2.0 tags: - generated_from_trainer - axolotl - w8a8 - int8 base_model: cognitivecomputations/dolphin-2.9.3-mistral-7B-32k datasets: - cognitivecomputations/Dolphin-2.9 - teknium/OpenHermes-2.5 - m-a-p/CodeFeedback-Filtered-Instruction - cognitivecomputations/dolphin-coder - cognitivecomputations/samantha-data - microsoft/orca-math-word-problems-200k - Locutusque/function-calling-chatml - internlm/Agent-FLAN model-index: - name: dolphin-2.9.3-mistral-7B-32k results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 41.26 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-7B-32k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 26.91 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-7B-32k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 4.83 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-7B-32k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 4.7 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-7B-32k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 17.93 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-7B-32k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 20.23 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-7B-32k name: Open LLM Leaderboard --- # W8A8 quant of Dolphin 2.9.3 Mistral 7b v0.3 32k 🐬 Quantization script: Curated and trained by Eric Hartford and Cognitive Computations [![Discord](https://img.shields.io/discord/1156064224225808488?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FtCMkMDDHwm)](https://discord.gg/h3K4XGj2RH) Discord: https://discord.gg/h3K4XGj2RH Our appreciation for the sponsors of Dolphin 2.9.3: - [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xH100 node - [OnDemand](https://on-demand.io/) - provided inference sponsorship This model is based on mistralai/Mistral-7B-v0.3, and is governed by the apache 2.0 license. The base model has 32k context, and our finetuning took place with 8192 sequence length. Dolphin 2.9.3 uses ChatML prompt template format. example: ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Dolphin-2.9.3 has a variety of instruction following, conversational, and coding skills. It also has initial agentic abilities and supports function calling. Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly. Dolphin is licensed according to apache 2.0 license. We grant permission for any use, including commercial. Dolphin was trained on data generated from GPT4, among other models. ## Evals ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/5KUgfzJyY1IM4Yg6bg3Dq.png) ## Training [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.3 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false # load_in_4bit: true strict: false datasets: - path: /workspace/datasets/dolphin-2.9.3/dolphin201-sharegpt2.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/SystemChat_filtered_sharegpt.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/SystemChat_multilingual_sharegpt.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-translate-sharegpt2.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-codegen-sharegpt2.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/not_samantha_norefusals.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/Orca-Math-resort-unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/agent_instruct_react_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/toolbench_instruct_j1s1_3k_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/toolbench_negative_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/toolbench_react_10p_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/toolbench_tflan_cot_30p_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.3/openhermes200k_unfiltered.jsonl type: sharegpt conversation: chatml chat_template: chatml # adapter: qlora # lora_r: 128 # lora_alpha: 16 # lora_modules_to_save: [embed_tokens, lm_head] # lora_dropout: 0.05 # lora_target_linear: true dataset_prepared_path: /workspace/axolotl/dolph-2.9.3-prepared val_set_size: 0.01 output_dir: /workspace/axolotl/dolphin-2.9.3-mistral-7B sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: dolphin-2.9.3-Mistral-7B wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 1 num_epochs: 3 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 5e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 # evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 save_total_limit: 2 save_steps: debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" tokens: - "<|im_start|>" ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_cognitivecomputations__dolphin-2.9.3-mistral-7B-32k) | Metric |Value| |-------------------|----:| |Avg. |19.31| |IFEval (0-Shot) |41.26| |BBH (3-Shot) |26.91| |MATH Lvl 5 (4-Shot)| 4.83| |GPQA (0-shot) | 4.70| |MuSR (0-shot) |17.93| |MMLU-PRO (5-shot) |20.23|