--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: 'investors:Creating huge opportunities for investors who can see past this rate hike cycle. Which should be over soon. #tesla $TSLA' - text: 'Powerwall:@TeslaSolar roof stood up to #HurricaneIan with 155mph winds and storm surge! This Powerwall was underwater for hours and is still working perfectly.' - text: 'analysts:Ron Barron: We see so much potential, we don‚Äôt want to sell; Of all companies I cover & analysts come pitch to me, the company I feel the most confidence in is $TSLA; People think we''re going into a slowdown but demand for their cars has never been better.' - text: house:Thank you @Tesla for delivering a car to the wrong address (my house), blocking my driveway for hours and not allowing me to pickup my kids from school on such a hot day. On top of that, all your driver had to say was "call Tesla and tell them, I'm just a driver". https://t.co/QqMXoAT7SJ - text: 'pitch:Ron Barron: We see so much potential, we don‚Äôt want to sell; Of all companies I cover & analysts come pitch to me, the company I feel the most confidence in is $TSLA; People think we''re going into a slowdown but demand for their cars has never been better.' pipeline_tag: text-classification inference: false base_model: sentence-transformers/paraphrase-mpnet-base-v2 --- # SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [NazmusAshrafi/setfit-absa-sm-stock-tweet-aspect](https://huggingface.co./NazmusAshrafi/setfit-absa-sm-stock-tweet-aspect) - **SetFitABSA Polarity Model:** [NazmusAshrafi/setfit-absa-sm-stock-tweet-polarity](https://huggingface.co./NazmusAshrafi/setfit-absa-sm-stock-tweet-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "NazmusAshrafi/setfit-absa-sm-stock-tweet-aspect", "NazmusAshrafi/setfit-absa-sm-stock-tweet-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 7 | 34.3860 | 54 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 93 | | aspect | 21 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 16) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0017 | 1 | 0.2658 | - | | 0.0868 | 50 | 0.2171 | - | | 0.1736 | 100 | 0.0649 | - | | 0.2604 | 150 | 0.0259 | - | | 0.3472 | 200 | 0.0802 | - | | 0.4340 | 250 | 0.0425 | - | | 0.5208 | 300 | 0.0258 | - | | 0.6076 | 350 | 0.0435 | - | | 0.6944 | 400 | 0.0793 | - | | 0.7812 | 450 | 0.0072 | - | | 0.8681 | 500 | 0.0003 | - | | 0.9549 | 550 | 0.0116 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.2 - Sentence Transformers: 2.2.2 - spaCy: 3.6.1 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```