--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: EPS:Why do I invest in $TSLA? Do I have blind faith? No. I closely watch their EPS, their P/E, their products, their forecast. This is the only investment I KNOW. And I know this is a great investment. I don’t say this to convince anyone. These are my thoughts about my investment. - text: EPS:$TSLA at 57x Street 2023 EPS (45x my 2023 EPS) seems an absurd valuation for 50%+ volume/EPS growth fueled by the dual tailwinds of soaring EV adoption and TSLA capacity. Investors seem overly worried Elon will sell more TSLA shares even though he says “no further sales planned.” https://t.co/80siAfL847 - text: 'TSLA:Cars ... for delivery ? Most likely so. $TSLA #GigaBerlin https://t.co/XL6auHEYjZ' - text: companies:Mainstream media has done an amazing job at brainwashing people. Today at work, we were asked what companies we believe in & I said @Tesla because they make the safest cars & EVERYONE disagreed with me because they heard“they catch on fire & the batteries cost 20k to replace” - text: 'cash flow:The market won’t be able to hold Tesla stock down longer, once all factories are ramping and in full production. There’s a certain point where the # of cars being produced, revenue & profit & cash flow generated makes the valuation of Tesla look ridiculous. $TSLA #Tesla' pipeline_tag: text-classification inference: false base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9798115746971736 name: Accuracy --- # SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect](https://huggingface.co./NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect) - **SetFitABSA Polarity Model:** [NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity](https://huggingface.co./NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:----------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | no aspect | | | aspect | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9798 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect", "NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 11 | 41.4789 | 57 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 560 | | aspect | 33 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 16) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0001 | 1 | 0.2511 | - | | 0.0025 | 50 | 0.2558 | - | | 0.0051 | 100 | 0.2147 | - | | 0.0076 | 150 | 0.2265 | - | | 0.0101 | 200 | 0.2474 | - | | 0.0127 | 250 | 0.2286 | - | | 0.0152 | 300 | 0.1717 | - | | 0.0178 | 350 | 0.0737 | - | | 0.0203 | 400 | 0.0231 | - | | 0.0228 | 450 | 0.0069 | - | | 0.0254 | 500 | 0.0032 | - | | 0.0279 | 550 | 0.002 | - | | 0.0304 | 600 | 0.0008 | - | | 0.0330 | 650 | 0.0023 | - | | 0.0355 | 700 | 0.002 | - | | 0.0381 | 750 | 0.0008 | - | | 0.0406 | 800 | 0.0019 | - | | 0.0431 | 850 | 0.0003 | - | | 0.0457 | 900 | 0.0004 | - | | 0.0482 | 950 | 0.0005 | - | | 0.0507 | 1000 | 0.0003 | - | | 0.0533 | 1050 | 0.0006 | - | | 0.0558 | 1100 | 0.0071 | - | | 0.0584 | 1150 | 0.0001 | - | | 0.0609 | 1200 | 0.0001 | - | | 0.0634 | 1250 | 0.0001 | - | | 0.0660 | 1300 | 0.0001 | - | | 0.0685 | 1350 | 0.0004 | - | | 0.0710 | 1400 | 0.0001 | - | | 0.0736 | 1450 | 0.0002 | - | | 0.0761 | 1500 | 0.0002 | - | | 0.0787 | 1550 | 0.0002 | - | | 0.0812 | 1600 | 0.0001 | - | | 0.0837 | 1650 | 0.0001 | - | | 0.0863 | 1700 | 0.0007 | - | | 0.0888 | 1750 | 0.0001 | - | | 0.0913 | 1800 | 0.0002 | - | | 0.0939 | 1850 | 0.0011 | - | | 0.0964 | 1900 | 0.0007 | - | | 0.0990 | 1950 | 0.001 | - | | 0.1015 | 2000 | 0.0003 | - | | 0.1040 | 2050 | 0.0004 | - | | 0.1066 | 2100 | 0.0006 | - | | 0.1091 | 2150 | 0.0004 | - | | 0.1116 | 2200 | 0.0 | - | | 0.1142 | 2250 | 0.0 | - | | 0.1167 | 2300 | 0.0001 | - | | 0.1193 | 2350 | 0.0017 | - | | 0.1218 | 2400 | 0.0007 | - | | 0.1243 | 2450 | 0.0023 | - | | 0.1269 | 2500 | 0.0 | - | | 0.1294 | 2550 | 0.0 | - | | 0.1319 | 2600 | 0.0007 | - | | 0.1345 | 2650 | 0.0 | - | | 0.1370 | 2700 | 0.0004 | - | | 0.1396 | 2750 | 0.0001 | - | | 0.1421 | 2800 | 0.0002 | - | | 0.1446 | 2850 | 0.0019 | - | | 0.1472 | 2900 | 0.0002 | - | | 0.1497 | 2950 | 0.0001 | - | | 0.1522 | 3000 | 0.0 | - | | 0.1548 | 3050 | 0.0001 | - | | 0.1573 | 3100 | 0.0 | - | | 0.1598 | 3150 | 0.0001 | - | | 0.1624 | 3200 | 0.0007 | - | | 0.1649 | 3250 | 0.0 | - | | 0.1675 | 3300 | 0.0002 | - | | 0.1700 | 3350 | 0.0004 | - | | 0.1725 | 3400 | 0.0 | - | | 0.1751 | 3450 | 0.0 | - | | 0.1776 | 3500 | 0.0 | - | | 0.1801 | 3550 | 0.0 | - | | 0.1827 | 3600 | 0.0001 | - | | 0.1852 | 3650 | 0.0 | - | | 0.1878 | 3700 | 0.0001 | - | | 0.1903 | 3750 | 0.0 | - | | 0.1928 | 3800 | 0.0 | - | | 0.1954 | 3850 | 0.0 | - | | 0.1979 | 3900 | 0.0 | - | | 0.2004 | 3950 | 0.0 | - | | 0.2030 | 4000 | 0.0 | - | | 0.2055 | 4050 | 0.0019 | - | | 0.2081 | 4100 | 0.0 | - | | 0.2106 | 4150 | 0.0001 | - | | 0.2131 | 4200 | 0.0 | - | | 0.2157 | 4250 | 0.0 | - | | 0.2182 | 4300 | 0.0 | - | | 0.2207 | 4350 | 0.0 | - | | 0.2233 | 4400 | 0.0005 | - | | 0.2258 | 4450 | 0.0 | - | | 0.2284 | 4500 | 0.0 | - | | 0.2309 | 4550 | 0.0 | - | | 0.2334 | 4600 | 0.0 | - | | 0.2360 | 4650 | 0.0 | - | | 0.2385 | 4700 | 0.0009 | - | | 0.2410 | 4750 | 0.0 | - | | 0.2436 | 4800 | 0.0 | - | | 0.2461 | 4850 | 0.0 | - | | 0.2487 | 4900 | 0.0002 | - | | 0.2512 | 4950 | 0.0 | - | | 0.2537 | 5000 | 0.0011 | - | | 0.2563 | 5050 | 0.0 | - | | 0.2588 | 5100 | 0.0 | - | | 0.2613 | 5150 | 0.0 | - | | 0.2639 | 5200 | 0.0 | - | | 0.2664 | 5250 | 0.0 | - | | 0.2690 | 5300 | 0.0 | - | | 0.2715 | 5350 | 0.0026 | - | | 0.2740 | 5400 | 0.0 | - | | 0.2766 | 5450 | 0.0021 | - | | 0.2791 | 5500 | 0.0 | - | | 0.2816 | 5550 | 0.0001 | - | | 0.2842 | 5600 | 0.0 | - | | 0.2867 | 5650 | 0.0001 | - | | 0.2893 | 5700 | 0.0 | - | | 0.2918 | 5750 | 0.0 | - | | 0.2943 | 5800 | 0.0 | - | | 0.2969 | 5850 | 0.0 | - | | 0.2994 | 5900 | 0.0 | - | | 0.3019 | 5950 | 0.0 | - | | 0.3045 | 6000 | 0.0 | - | | 0.3070 | 6050 | 0.0 | - | | 0.3096 | 6100 | 0.0 | - | | 0.3121 | 6150 | 0.0003 | - | | 0.3146 | 6200 | 0.0 | - | | 0.3172 | 6250 | 0.0 | - | | 0.3197 | 6300 | 0.0 | - | | 0.3222 | 6350 | 0.0001 | - | | 0.3248 | 6400 | 0.0009 | - | | 0.3273 | 6450 | 0.0 | - | | 0.3298 | 6500 | 0.0 | - | | 0.3324 | 6550 | 0.0 | - | | 0.3349 | 6600 | 0.0 | - | | 0.3375 | 6650 | 0.0 | - | | 0.3400 | 6700 | 0.0 | - | | 0.3425 | 6750 | 0.0 | - | | 0.3451 | 6800 | 0.0 | - | | 0.3476 | 6850 | 0.0 | - | | 0.3501 | 6900 | 0.0 | - | | 0.3527 | 6950 | 0.0 | - | | 0.3552 | 7000 | 0.0 | - | | 0.3578 | 7050 | 0.0 | - | | 0.3603 | 7100 | 0.0536 | - | | 0.3628 | 7150 | 0.0 | - | | 0.3654 | 7200 | 0.0 | - | | 0.3679 | 7250 | 0.0 | - | | 0.3704 | 7300 | 0.0 | - | | 0.3730 | 7350 | 0.0 | - | | 0.3755 | 7400 | 0.0 | - | | 0.3781 | 7450 | 0.0 | - | | 0.3806 | 7500 | 0.0 | - | | 0.3831 | 7550 | 0.0 | - | | 0.3857 | 7600 | 0.0 | - | | 0.3882 | 7650 | 0.0 | - | | 0.3907 | 7700 | 0.0 | - | | 0.3933 | 7750 | 0.0019 | - | | 0.3958 | 7800 | 0.0 | - | | 0.3984 | 7850 | 0.0 | - | | 0.4009 | 7900 | 0.0548 | - | | 0.4034 | 7950 | 0.0 | - | | 0.4060 | 8000 | 0.0053 | - | | 0.4085 | 8050 | 0.0 | - | | 0.4110 | 8100 | 0.0 | - | | 0.4136 | 8150 | 0.0 | - | | 0.4161 | 8200 | 0.0 | - | | 0.4187 | 8250 | 0.0624 | - | | 0.4212 | 8300 | 0.0622 | - | | 0.4237 | 8350 | 0.0618 | - | | 0.4263 | 8400 | 0.0001 | - | | 0.4288 | 8450 | 0.0 | - | | 0.4313 | 8500 | 0.0001 | - | | 0.4339 | 8550 | 0.0 | - | | 0.4364 | 8600 | 0.0 | - | | 0.4390 | 8650 | 0.0 | - | | 0.4415 | 8700 | 0.0012 | - | | 0.4440 | 8750 | 0.0001 | - | | 0.4466 | 8800 | 0.0005 | - | | 0.4491 | 8850 | 0.0 | - | | 0.4516 | 8900 | 0.0 | - | | 0.4542 | 8950 | 0.0 | - | | 0.4567 | 9000 | 0.0 | - | | 0.4593 | 9050 | 0.0 | - | | 0.4618 | 9100 | 0.0 | - | | 0.4643 | 9150 | 0.0 | - | | 0.4669 | 9200 | 0.0 | - | | 0.4694 | 9250 | 0.0408 | - | | 0.4719 | 9300 | 0.0498 | - | | 0.4745 | 9350 | 0.0 | - | | 0.4770 | 9400 | 0.0 | - | | 0.4795 | 9450 | 0.0017 | - | | 0.4821 | 9500 | 0.0 | - | | 0.4846 | 9550 | 0.0 | - | | 0.4872 | 9600 | 0.0 | - | | 0.4897 | 9650 | 0.0 | - | | 0.4922 | 9700 | 0.0 | - | | 0.4948 | 9750 | 0.0 | - | | 0.4973 | 9800 | 0.0589 | - | | 0.4998 | 9850 | 0.0 | - | | 0.5024 | 9900 | 0.0 | - | | 0.5049 | 9950 | 0.0015 | - | | 0.5075 | 10000 | 0.0 | - | | 0.5100 | 10050 | 0.0 | - | | 0.5125 | 10100 | 0.0 | - | | 0.5151 | 10150 | 0.0 | - | | 0.5176 | 10200 | 0.0 | - | | 0.5201 | 10250 | 0.0 | - | | 0.5227 | 10300 | 0.0013 | - | | 0.5252 | 10350 | 0.0023 | - | | 0.5278 | 10400 | 0.0 | - | | 0.5303 | 10450 | 0.0 | - | | 0.5328 | 10500 | 0.0 | - | | 0.5354 | 10550 | 0.0003 | - | | 0.5379 | 10600 | 0.0 | - | | 0.5404 | 10650 | 0.0 | - | | 0.5430 | 10700 | 0.0002 | - | | 0.5455 | 10750 | 0.0 | - | | 0.5481 | 10800 | 0.0 | - | | 0.5506 | 10850 | 0.0005 | - | | 0.5531 | 10900 | 0.0 | - | | 0.5557 | 10950 | 0.0 | - | | 0.5582 | 11000 | 0.0 | - | | 0.5607 | 11050 | 0.0 | - | | 0.5633 | 11100 | 0.0 | - | | 0.5658 | 11150 | 0.0 | - | | 0.5684 | 11200 | 0.0 | - | | 0.5709 | 11250 | 0.0 | - | | 0.5734 | 11300 | 0.0 | - | | 0.5760 | 11350 | 0.0008 | - | | 0.5785 | 11400 | 0.0 | - | | 0.5810 | 11450 | 0.0024 | - | | 0.5836 | 11500 | 0.0 | - | | 0.5861 | 11550 | 0.0 | - | | 0.5887 | 11600 | 0.0 | - | | 0.5912 | 11650 | 0.0 | - | | 0.5937 | 11700 | 0.001 | - | | 0.5963 | 11750 | 0.0 | - | | 0.5988 | 11800 | 0.0 | - | | 0.6013 | 11850 | 0.0 | - | | 0.6039 | 11900 | 0.0527 | - | | 0.6064 | 11950 | 0.0021 | - | | 0.6090 | 12000 | 0.0 | - | | 0.6115 | 12050 | 0.0 | - | | 0.6140 | 12100 | 0.0 | - | | 0.6166 | 12150 | 0.0 | - | | 0.6191 | 12200 | 0.0 | - | | 0.6216 | 12250 | 0.0 | - | | 0.6242 | 12300 | 0.0 | - | | 0.6267 | 12350 | 0.0006 | - | | 0.6292 | 12400 | 0.0 | - | | 0.6318 | 12450 | 0.0 | - | | 0.6343 | 12500 | 0.001 | - | | 0.6369 | 12550 | 0.0017 | - | | 0.6394 | 12600 | 0.0 | - | | 0.6419 | 12650 | 0.0 | - | | 0.6445 | 12700 | 0.0 | - | | 0.6470 | 12750 | 0.0012 | - | | 0.6495 | 12800 | 0.0 | - | | 0.6521 | 12850 | 0.0 | - | | 0.6546 | 12900 | 0.0 | - | | 0.6572 | 12950 | 0.0434 | - | | 0.6597 | 13000 | 0.0 | - | | 0.6622 | 13050 | 0.0 | - | | 0.6648 | 13100 | 0.0003 | - | | 0.6673 | 13150 | 0.0 | - | | 0.6698 | 13200 | 0.0 | - | | 0.6724 | 13250 | 0.0003 | - | | 0.6749 | 13300 | 0.0 | - | | 0.6775 | 13350 | 0.0 | - | | 0.6800 | 13400 | 0.0005 | - | | 0.6825 | 13450 | 0.0 | - | | 0.6851 | 13500 | 0.0011 | - | | 0.6876 | 13550 | 0.0475 | - | | 0.6901 | 13600 | 0.0 | - | | 0.6927 | 13650 | 0.0007 | - | | 0.6952 | 13700 | 0.0 | - | | 0.6978 | 13750 | 0.0 | - | | 0.7003 | 13800 | 0.0 | - | | 0.7028 | 13850 | 0.0 | - | | 0.7054 | 13900 | 0.0 | - | | 0.7079 | 13950 | 0.0015 | - | | 0.7104 | 14000 | 0.0034 | - | | 0.7130 | 14050 | 0.0009 | - | | 0.7155 | 14100 | 0.0 | - | | 0.7181 | 14150 | 0.0009 | - | | 0.7206 | 14200 | 0.0 | - | | 0.7231 | 14250 | 0.0003 | - | | 0.7257 | 14300 | 0.0004 | - | | 0.7282 | 14350 | 0.0 | - | | 0.7307 | 14400 | 0.0003 | - | | 0.7333 | 14450 | 0.0 | - | | 0.7358 | 14500 | 0.0 | - | | 0.7384 | 14550 | 0.0 | - | | 0.7409 | 14600 | 0.0 | - | | 0.7434 | 14650 | 0.0 | - | | 0.7460 | 14700 | 0.0018 | - | | 0.7485 | 14750 | 0.0012 | - | | 0.7510 | 14800 | 0.0 | - | | 0.7536 | 14850 | 0.0 | - | | 0.7561 | 14900 | 0.0013 | - | | 0.7587 | 14950 | 0.0 | - | | 0.7612 | 15000 | 0.0 | - | | 0.7637 | 15050 | 0.0 | - | | 0.7663 | 15100 | 0.0 | - | | 0.7688 | 15150 | 0.0 | - | | 0.7713 | 15200 | 0.0 | - | | 0.7739 | 15250 | 0.0 | - | | 0.7764 | 15300 | 0.0 | - | | 0.7790 | 15350 | 0.0 | - | | 0.7815 | 15400 | 0.0 | - | | 0.7840 | 15450 | 0.0 | - | | 0.7866 | 15500 | 0.0 | - | | 0.7891 | 15550 | 0.0 | - | | 0.7916 | 15600 | 0.0004 | - | | 0.7942 | 15650 | 0.0005 | - | | 0.7967 | 15700 | 0.0 | - | | 0.7992 | 15750 | 0.0 | - | | 0.8018 | 15800 | 0.0 | - | | 0.8043 | 15850 | 0.0 | - | | 0.8069 | 15900 | 0.0 | - | | 0.8094 | 15950 | 0.0555 | - | | 0.8119 | 16000 | 0.0 | - | | 0.8145 | 16050 | 0.0 | - | | 0.8170 | 16100 | 0.0 | - | | 0.8195 | 16150 | 0.0 | - | | 0.8221 | 16200 | 0.0 | - | | 0.8246 | 16250 | 0.0007 | - | | 0.8272 | 16300 | 0.0 | - | | 0.8297 | 16350 | 0.0 | - | | 0.8322 | 16400 | 0.0 | - | | 0.8348 | 16450 | 0.0003 | - | | 0.8373 | 16500 | 0.0 | - | | 0.8398 | 16550 | 0.0012 | - | | 0.8424 | 16600 | 0.0 | - | | 0.8449 | 16650 | 0.0 | - | | 0.8475 | 16700 | 0.0 | - | | 0.8500 | 16750 | 0.0 | - | | 0.8525 | 16800 | 0.0 | - | | 0.8551 | 16850 | 0.0 | - | | 0.8576 | 16900 | 0.0007 | - | | 0.8601 | 16950 | 0.0 | - | | 0.8627 | 17000 | 0.001 | - | | 0.8652 | 17050 | 0.0 | - | | 0.8678 | 17100 | 0.0 | - | | 0.8703 | 17150 | 0.0 | - | | 0.8728 | 17200 | 0.0 | - | | 0.8754 | 17250 | 0.0 | - | | 0.8779 | 17300 | 0.0 | - | | 0.8804 | 17350 | 0.0 | - | | 0.8830 | 17400 | 0.0007 | - | | 0.8855 | 17450 | 0.0 | - | | 0.8881 | 17500 | 0.0 | - | | 0.8906 | 17550 | 0.0505 | - | | 0.8931 | 17600 | 0.0 | - | | 0.8957 | 17650 | 0.0 | - | | 0.8982 | 17700 | 0.0008 | - | | 0.9007 | 17750 | 0.0 | - | | 0.9033 | 17800 | 0.0003 | - | | 0.9058 | 17850 | 0.0 | - | | 0.9084 | 17900 | 0.0 | - | | 0.9109 | 17950 | 0.0009 | - | | 0.9134 | 18000 | 0.0 | - | | 0.9160 | 18050 | 0.0 | - | | 0.9185 | 18100 | 0.0 | - | | 0.9210 | 18150 | 0.0 | - | | 0.9236 | 18200 | 0.0 | - | | 0.9261 | 18250 | 0.0 | - | | 0.9287 | 18300 | 0.0 | - | | 0.9312 | 18350 | 0.0008 | - | | 0.9337 | 18400 | 0.0 | - | | 0.9363 | 18450 | 0.0 | - | | 0.9388 | 18500 | 0.0 | - | | 0.9413 | 18550 | 0.0 | - | | 0.9439 | 18600 | 0.0 | - | | 0.9464 | 18650 | 0.0 | - | | 0.9489 | 18700 | 0.0 | - | | 0.9515 | 18750 | 0.0 | - | | 0.9540 | 18800 | 0.0 | - | | 0.9566 | 18850 | 0.0 | - | | 0.9591 | 18900 | 0.0 | - | | 0.9616 | 18950 | 0.0 | - | | 0.9642 | 19000 | 0.0 | - | | 0.9667 | 19050 | 0.0 | - | | 0.9692 | 19100 | 0.0 | - | | 0.9718 | 19150 | 0.0 | - | | 0.9743 | 19200 | 0.0 | - | | 0.9769 | 19250 | 0.0 | - | | 0.9794 | 19300 | 0.0005 | - | | 0.9819 | 19350 | 0.0 | - | | 0.9845 | 19400 | 0.0 | - | | 0.9870 | 19450 | 0.0 | - | | 0.9895 | 19500 | 0.0 | - | | 0.9921 | 19550 | 0.0011 | - | | 0.9946 | 19600 | 0.0 | - | | 0.9972 | 19650 | 0.0 | - | | 0.9997 | 19700 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - spaCy: 3.6.1 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```