--- license: apache-2.0 --- this model was trained on Mistral-Instruct-V0.2 with chinese and english github [Web-UI](https://github.com/moseshu/llama2-chat/tree/main/webui) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62f4c7172f63f904a0c61ba3/7Sqj2oRTauOplhXsodMnp.png) ```python from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer,AutoTokenizer,AutoModelForCausalLM,MistralForCausalLM import torch model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",) from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer,AutoTokenizer,AutoModelForCausalLM,MistralForCausalLM import torch model_id=Moses25/Mistral-7B-chat-32k tokenizer = AutoTokenizer.from_pretrained(model_id) mistral_template="{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}" llama3_template="{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}" def chat_format(conversation:list,tokenizer,chat_type="mistral"): system_prompt = "You are a helpful, respectful and honest assistant.Help humman as much as you can." ap = [{"role":"system","content":system_prompt}] + conversation if chat_type=='mistral': id = tokenizer.apply_chat_template(ap,chat_template=mistral_template,tokenize=False) elif chat_type=='llama3': id = tokenizer.apply_chat_template(ap,chat_template=llama3_template,tokenize=False) id = id.rstrip("<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n") return id user_chat=[{"role":"user","content":"In a basket, there are 20 oranges, 60 apples, and 40 bananas. If 15 pears were added, and half of the oranges were removed, what would be the new ratio of oranges to apples, bananas, and pears combined within the basket?"}] text = chat_format(user_chat,tokenizer,'mistral') def predict(content_prompt): inputs = tokenizer(content_prompt,return_tensors="pt",add_special_tokens=True) input_ids = inputs["input_ids"].to("cuda:0") # print(f"input length:{len(input_ids[0])}") with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, #generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=2048, top_p=0.9, num_beams=1, do_sample=True, repetition_penalty=1.0, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) s = generation_output.sequences[0] output = tokenizer.decode(s,skip_special_tokens=True) output1 = output.split("[/INST]")[-1].strip() # print(output1) return output1 predict(text) output:"""Let's break down the steps to find the new ratio of oranges to apples, bananas, and pears combined: Calculate the total number of fruits initially in the basket: Oranges: 20 Apples: 60 Bananas: 40 Total Fruits = 20 + 60 + 40 = 120 Add 15 pears: Total Fruits after adding pears = 120 + 15 = 135 Remove half of the oranges: Oranges remaining = 20 / 2 = 10 Calculate the total number of fruits remaining in the basket after removing half of the oranges: Total Remaining Fruits = 10 (oranges) + 60 (apples) + 40 (bananas) + 15 (pears) = 125 Find the ratio of oranges to apples, bananas, and pears combined: Ratio of Oranges to (Apples, Bananas, Pears) Combined = Oranges / (Apples + Bananas + Pears) = 10 / (60 + 40 + 15) = 10 / 115 So, the new ratio of oranges to apples, bananas, and pears combined within the basket is 10:115. However, I should note that the actual fruit distribution in your basket may vary depending on how you decide to count and categorize the fruits. The example calculation provides a theoretical ratio based on the initial quantities mentioned.""" ``` ## vLLM server ```shell #llama2-chat-template.jinja file is chat-template above 'mistral-template' model_path="Moses25/Mistral-7B-chat-32k" python -m vllm.entrypoints.openai.api_server --model=$model_path \ --trust-remote-code --host 0.0.0.0 --port 7777 \ --gpu-memory-utilization 0.8 \ --max-model-len 8192 --chat-template llama2-chat-template.jinja \ --tensor-parallel-size 1 --served-model-name chatbot ``` ```python from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:7777/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) call_args = { 'temperature': 0.7, 'top_p': 0.9, 'top_k': 40, 'max_tokens': 2048, # output-len 'presence_penalty': 1.0, 'frequency_penalty': 0.0, "repetition_penalty":1.0, "stop":[""], } chat_response = client.chat.completions.create( model="chatbot", messages=[ {"role": "user", "content": "你好"}, ], extra_body=call_args ) print("Chat response:", chat_response) ``` ### ollama ModelFile ```shell TEMPLATE """[INST] <> {{ .System }} <> {{ .Prompt }} [/INST] """ PARAMETER stop [INST] PARAMETER stop [/INST] PARAMETER stop <> PARAMETER stop <> PARAMETER num_ctx 16384 PARAMETER temperature 0.7 SYSTEM """You are a helpful, respectful and honest assistant.Help humman as much as you can.""" ```