--- language: - en license: mit tags: - text-classification - zero-shot-classification datasets: - multi_nli - facebook/anli - fever - lingnli - alisawuffles/WANLI metrics: - accuracy pipeline_tag: zero-shot-classification model-index: - name: DeBERTa-v3-large-mnli-fever-anli-ling-wanli results: - task: type: text-classification name: Natural Language Inference dataset: name: MultiNLI-matched type: multi_nli split: validation_matched metrics: - type: accuracy value: 0,912 verified: false - task: type: text-classification name: Natural Language Inference dataset: name: MultiNLI-mismatched type: multi_nli split: validation_mismatched metrics: - type: accuracy value: 0,908 verified: false - task: type: text-classification name: Natural Language Inference dataset: name: ANLI-all type: anli split: test_r1+test_r2+test_r3 metrics: - type: accuracy value: 0,702 verified: false - task: type: text-classification name: Natural Language Inference dataset: name: ANLI-r3 type: anli split: test_r3 metrics: - type: accuracy value: 0,64 verified: false - task: type: text-classification name: Natural Language Inference dataset: name: WANLI type: alisawuffles/WANLI split: test metrics: - type: accuracy value: 0,77 verified: false - task: type: text-classification name: Natural Language Inference dataset: name: LingNLI type: lingnli split: test metrics: - type: accuracy value: 0,87 verified: false --- # DeBERTa-v3-large-mnli-fever-anli-ling-wanli ## Model description This model was fine-tuned on the [MultiNLI](https://huggingface.co./datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), Adversarial-NLI ([ANLI](https://huggingface.co./datasets/anli)), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co./datasets/alisawuffles/WANLI) datasets, which comprise 885 242 NLI hypothesis-premise pairs. This model is the best performing NLI model on the Hugging Face Hub as of 06.06.22 and can be used for zero-shot classification. It significantly outperforms all other large models on the [ANLI benchmark](https://github.com/facebookresearch/anli). The foundation model is [DeBERTa-v3-large from Microsoft](https://huggingface.co./microsoft/deberta-v3-large). DeBERTa-v3 combines several recent innovations compared to classical Masked Language Models like BERT, RoBERTa etc., see the [paper](https://arxiv.org/abs/2111.09543) ### How to use the model #### Simple zero-shot classification pipeline ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli") sequence_to_classify = "Angela Merkel is a politician in Germany and leader of the CDU" candidate_labels = ["politics", "economy", "entertainment", "environment"] output = classifier(sequence_to_classify, candidate_labels, multi_label=False) print(output) ``` #### NLI use-case ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing." hypothesis = "The movie was not good." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "neutral", "contradiction"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Training data DeBERTa-v3-large-mnli-fever-anli-ling-wanli was trained on the [MultiNLI](https://huggingface.co./datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), Adversarial-NLI ([ANLI](https://huggingface.co./datasets/anli)), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co./datasets/alisawuffles/WANLI) datasets, which comprise 885 242 NLI hypothesis-premise pairs. Note that [SNLI](https://huggingface.co./datasets/snli) was explicitly excluded due to quality issues with the dataset. More data does not necessarily make for better NLI models. ### Training procedure DeBERTa-v3-large-mnli-fever-anli-ling-wanli was trained using the Hugging Face trainer with the following hyperparameters. Note that longer training with more epochs hurt performance in my tests (overfitting). ``` training_args = TrainingArguments( num_train_epochs=4, # total number of training epochs learning_rate=5e-06, per_device_train_batch_size=16, # batch size per device during training gradient_accumulation_steps=2, # doubles the effective batch_size to 32, while decreasing memory requirements per_device_eval_batch_size=64, # batch size for evaluation warmup_ratio=0.06, # number of warmup steps for learning rate scheduler weight_decay=0.01, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using the test sets for MultiNLI, ANLI, LingNLI, WANLI and the dev set for Fever-NLI. The metric used is accuracy. The model achieves state-of-the-art performance on each dataset. Surprisingly, it outperforms the previous [state-of-the-art on ANLI](https://github.com/facebookresearch/anli) (ALBERT-XXL) by 8,3%. I assume that this is because ANLI was created to fool masked language models like RoBERTa (or ALBERT), while DeBERTa-v3 uses a better pre-training objective (RTD), disentangled attention and I fine-tuned it on higher quality NLI data. |Datasets|mnli_test_m|mnli_test_mm|anli_test|anli_test_r3|ling_test|wanli_test| | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |Accuracy|0.912|0.908|0.702|0.64|0.87|0.77| |Speed (text/sec, A100 GPU)|696.0|697.0|488.0|425.0|828.0|980.0| ## Limitations and bias Please consult the original DeBERTa-v3 paper and literature on different NLI datasets for more information on the training data and potential biases. The model will reproduce statistical patterns in the training data. ## Citation If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k. ### Ideas for cooperation or questions? If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/) ### Debugging and issues Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues.