--- license: apache-2.0 license_link: https://huggingface.co./Qwen/QwQ-32B-Preview/blob/main/LICENSE language: - en base_model: - Qwen/QwQ-32B-Preview pipeline_tag: text-generation tags: - gptqmodel - modelcloud - chat - qwen2 - qwq - instruct - int4 - gptq - 4bit ---
🐛 Update: We have discovered a regression in the QwQ Vortext v1 model that may output extra strings such as "Edited Text" that was result of invalid calibration data auto-injected by our vortex pipeline.
Please use v2 of the model here: https://huggingface.co./ModelCloud/QwQ-32B-Preview-gptqmodel-4bit-vortex-v2
![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/NV7rN-pih5sApVOZeDXSJ.png) This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel). - **bits**: 4 - **dynamic**: null - **group_size**: 32 - **desc_act**: true - **static_groups**: false - **sym**: true - **lm_head**: false - **true_sequential**: true - **quant_method**: "gptq" - **checkpoint_format**: "gptq" - **meta**: - **quantizer**: gptqmodel:1.2.2 - **uri**: https://github.com/modelcloud/gptqmodel - **damp_percent**: 0.1 - **damp_auto_increment**: 0.0015 ## Example: ```python from transformers import AutoTokenizer from gptqmodel import GPTQModel tokenizer = AutoTokenizer.from_pretrained("ModelCloud/QwQ-32B-Preview-gptqmodel-4bit-vortex-v1") model = GPTQModel.load("ModelCloud/QwQ-32B-Preview-gptqmodel-4bit-vortex-v1") messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"}, ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ```