File size: 1,374 Bytes
548fed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: apache-2.0
tags:
- Safetensors
- text-generation-inference
- merge
model_name: T3qm7xNeuralsirkrishna_Experiment26Experiment24
base_model:
- automerger/T3qm7xNeuralsirkrishna-7B
- automerger/Experiment26Experiment24-7B
inference: false
model_creator: MaziyarPanahi
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
---
# T3qm7xNeuralsirkrishna_Experiment26Experiment24
T3qm7xNeuralsirkrishna_Experiment26Experiment24 is a merge of the following models:
* [automerger/T3qm7xNeuralsirkrishna-7B](https://huggingface.co./automerger/T3qm7xNeuralsirkrishna-7B)
* [automerger/Experiment26Experiment24-7B](https://huggingface.co./automerger/Experiment26Experiment24-7B)
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "MaziyarPanahi/T3qm7xNeuralsirkrishna_Experiment26Experiment24"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |