File size: 16,998 Bytes
c12bf36 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b99749e9bd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b99749e9c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b99749e9cf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b99749e9d80>", "_build": "<function ActorCriticPolicy._build at 0x7b99749e9e10>", "forward": "<function ActorCriticPolicy.forward at 0x7b99749e9ea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b99749e9f30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b99749e9fc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b99749ea050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b99749ea0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b99749ea170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b99749ea200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b99749e4b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691329747371810501, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAANLsDD+derM9dFc2Pi0zcr3Dh8C+1itTvrrsEL+BfYm/AACAP6vAkz/7/38/2FjOPXOnXr8AAAAA3xKbPvMinD7XmaE+DHeqPtZ/uD6Ias8+l6b1PlDjGD/0V10/AACAPzmgAbsIwbA9mhVtPkSFdb2vHzS+qN1Nv+ja5779/3+/AAAAAPFJhj9W3Lc+YHxcvQEAgL8AAAAAfmzHPkWwyT5Hv9A+1HjdPqeg8T7ukAg/pe0jP+3VSj8AAIA/AACAP5MWZL7FTZc9xAtmPhdW1D132hO/cCeLPi/BRD8AAIC/AAAAAAP9hD/+/3+/RglcPwEAgD8AAIA/D2ytPmMJsz5WQb0+iSzNPoLU4z54NgA/HBMXP8NVOT8UdHU/AACAPwgzdz6jnPE9ZYYxPi8awLzQeYi+AgCAv4BXfb7/wKO+AACAPzoDjD9MyFA+6OaEPmDzWb8AAAAAwpiyPtU7tj6FE70+4JjIPvvT2j7mlPk+tNAXP/UfQj8AAIA/AACAP9f81D5xDdw9UaSdPU6gnz1ufw2/GIErP8Rlgr71pPe/AACAP2evVz+ud9q+4Pp4PQAAgL8AAIA/ZMqoPvlxpz6e7ao+/li1PpK8wz6cztg+mR/8PgJZHz80W10/AACAP1Qr2z5zjCE9gZgnPiXFCb4VKRm/iTlYvzifi74AAIA/AAAAAD0Dlj8AAIA/kCbovv//f78AAAAA6C+UPlLPlD6zNZg+tTSfPtQ4qj71l74+ebTfPj03Cz9o7D8/AACAP75mnj5ke6Q9BCoEPmGoEj3RTny+CACAPxxpjr4BAIC/AAAAAFLyWj/kfqO+AKAAPQEAgL8AAIA/C9q0PtTntj6nIbs+BvjCPi2h0D42Meg+K1UHP0TBKT+WaWY/AACAP6fQTb6DNta8KGcvPqYxsj0Suxi/wlV/P6/kIz8lBIC/AAAAALugkT8AMF44AGeAPytFGDwAAIA/hDGWPmrslz6PPZ0+VmSnPrGtuD5qodQ+ndoAPxcUJD9l8Hk/AACAP/2DFT+UNbc9YepSPu2xHL5xbD6/HAzXvsyBoL4BAIC/AACAP0ifkD8AAAAAatMyPwEAgL8AAAAAdbOWPqOqlj7irJk+c5KhPnucrj5gQME+gRzhPvx+DD+XMko/AACAPw3FGj8iTh692IAsPpFTI73pwVW/AECLtwBrM7zt5dA9AACAP6BHkT8AADg1DGRvP6uq3zYAAAAA7TKaPnySmD4NpZo+WB2jPpacsT5IiMQ+04nhPoavCj90NUg/AACAP3cFbL6TvuO9EN3gPrtls7zN+E+/5UAHv8R7fj/9/38/AAAAAHz3iz+W5va+3riJP2RfD0AAAIA/Qb2aPh9/nD56CaM+/G6wPmQbxD5SkOA+j9QGP0sWJj/KgVk/AACAPyRNGz5j7xW+o7upPhjfGD3W4VW/gKojPDBa9D7gJYA/AACAPw6Siz84XZs+EG5uPwAAKLgAAAAAoWeXPs4fmT60e54+4CSoPkRytz7V7M4+npHzPtckGD+L6lA/AACAP6It0D4Etpy8jdaWPbIZKL2cvFW/ALhXuBj+Dr7ZeAI9AAAAAGDdjT982xy+0NL3PhMAgD8AAAAAGp2FPsz0hz4DnYs+ldiSPi7lnD7zaqw+bxjEPkZQ8j6Jexo/r5BmP4RQDz+aeZg9LKU/Pkixkb3Mz9i+ilFYv2RO8L7RbgM+AACAP1p7jD8AAAAApBTGPvj/fz8AAAAAUq6iPlMLoj62WKQ+AdGpPs56sz4zxsM++WPhPi8HCT8TrDs/AACAPzm1pz7g5FI8ABgePkPmKL3cWAa//f9/v1ArB76XjSQ/AACAPzjbiD+DCyc/mHKkPv3/fz8AAAAAeiujPrTnpD4orao+v9azPkQQwj4I9tc+OCz4Pp0NGj8Mb1U/AACAPzR2qD7qiSw9LFFNPt0XNr3UMRa/GgCAv1DbLL7Fxws/AACAP0ePiz8OAIA/qCVWPtB+LD8AAAAADCacPlu+oD6kyak+Cx65PvogzT6lo+g+c8EHP9GDKD82+1c/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFRyxeLNwBKMAWyUTUAGjAF0lEdAh78KgIyCWnV9lChoBkdAWTqEmICU5mgHTUAGaAhHQIfB0QXhwVF1fZQoaAZHwE+B3OfNA1NoB03uAWgIR0CHw0DcuanadX2UKGgGR8BWVqF/QSi/aAdNJwFoCEdAh9S5Xlr/KnV9lChoBkfAV6TFYMfA9GgHTYIBaAhHQIfcFNpM6BB1fZQoaAZHQFlf6Ww/xDtoB01ABmgIR0CH3mpn6EamdX2UKGgGR0Bd3FZX+2mYaAdNQAZoCEdAh+Na1Cw8n3V9lChoBkfARfqeI2wV02gHTegDaAhHQIgS19v0h/11fZQoaAZHQFuRTHbRF7VoB01ABmgIR0CIFI3mV7hOdX2UKGgGR0BgA0052hZhaAdNQAZoCEdAiB4WLpA2RHV9lChoBkdAWaV0V8CxNmgHTUAGaAhHQIggWPxQSBd1fZQoaAZHQFsJzZ6D5CZoB01ABmgIR0CIJQQQtjCpdX2UKGgGR0BdWA8r7O3VaAdNQAZoCEdAiCYYiX6ZY3V9lChoBkfAVbWaG5+Yt2gHTVIBaAhHQIgooJE6T4d1fZQoaAZHwFmAOUdJaq1oB0ucaAhHQIgqgMDwH7h1fZQoaAZHwD0e7I1cdHVoB01LBWgIR0CIQBUADJU6dX2UKGgGR0Bextf1HvtuaAdNQAZoCEdAiEDomXw9aHV9lChoBkdAXIAxtYSxq2gHTUAGaAhHQIhFJb4agmJ1fZQoaAZHwDTCq//NqxloB02yA2gIR0CIRkYa5wwTdX2UKGgGR8BRduI2wV0taAdNNgJoCEdAiEzW/rSmZXV9lChoBkdAWo8wi7kGRmgHTUAGaAhHQIhN+ez2OAB1fZQoaAZHQFr8sWweNkxoB01ABmgIR0CITzz/ZM+NdX2UKGgGR0BdFKzqrzXjaAdNQAZoCEdAiFD/C66J7HV9lChoBkfAXWMkdFOO82gHS1JoCEdAiH9gctGutHV9lChoBkfANSHGsFMZg2gHTY4EaAhHQIiEEhFEy+J1fZQoaAZHwESw0MPSUkhoB02OA2gIR0CIi2h1Tzd2dX2UKGgGR0Bf2APEsJ6ZaAdNQAZoCEdAiJFm0/nnuHV9lChoBkdAXsmWeHzpYGgHTUAGaAhHQIiYXWYnfEZ1fZQoaAZHQFwkuR9w3o9oB01ABmgIR0CIpad6LOzIdX2UKGgGR0BeikNFz+3paAdNQAZoCEdAiK9Z0r9VFXV9lChoBkdAXKTrWy1NQGgHTUAGaAhHQIi2Sbx3FDR1fZQoaAZHQF0+hw2l2vBoB01ABmgIR0CIu6593KSxdX2UKGgGR8BABhj4HoovaAdNIARoCEdAiLxUhmoR7XV9lChoBkfAHlq7iADq4mgHTYwFaAhHQIjwhh2GIsR1fZQoaAZHQFp1iSq2jO9oB01ABmgIR0CI/Qd9Ujs2dX2UKGgGR8BaJNTtLL6laAdLOmgIR0CJAKWcBltkdX2UKGgGR0Bc1F+RYA80aAdNQAZoCEdAiQFBgE2YOXV9lChoBkfAUMfyPMjeK2gHTfoBaAhHQIkBpSrHU+d1fZQoaAZHQF/i/1xsEaFoB01ABmgIR0CJAl7sv7FbdX2UKGgGR8BT+Xg1m8NAaAdNEgFoCEdAiQJgKv3ajHV9lChoBkdAXB07nxJ/X2gHTUAGaAhHQIkJDN2TxG51fZQoaAZHwFd0oBq9GqhoB0t/aAhHQIkJhcHGCI11fZQoaAZHQFuV5ftx+8ZoB01ABmgIR0CJDVMTviLmdX2UKGgGR0Bbjaf8MuvmaAdNQAZoCEdAiRC1jRUm2XV9lChoBkdAXOc9X9zfamgHTUAGaAhHQIkVaz3RG+d1fZQoaAZHQFcMNzbN8mdoB01ABmgIR0CJHHaN+9amdX2UKGgGR0BYPNtdiUgTaAdNQAZoCEdAiSKT101ZT3V9lChoBkdAWdmFK02LpGgHTUAGaAhHQIkpxiqhlDp1fZQoaAZHQFljErXlKbtoB01ABmgIR0CJYcveP7vYdX2UKGgGR8AiszposZpBaAdNIAVoCEdAiWUrGrCFbnV9lChoBkfASG/np0OmSGgHTcgDaAhHQIlqKqOtGNJ1fZQoaAZHQFxp1baAWi1oB01ABmgIR0CJa10Cih38dX2UKGgGR0BX+sSK3uuzaAdNQAZoCEdAiXhBZha1TnV9lChoBkdAWi6kl/pdKWgHTUAGaAhHQImRwBLf1pV1fZQoaAZHQFVV0tyxRl9oB01ABmgIR0CJk1gQYk3TdX2UKGgGR0BZI/GMn7YTaAdNQAZoCEdAiZNQ+lj3EnV9lChoBkdAWbIQPI4lyGgHTUAGaAhHQInFNp9JBgN1fZQoaAZHQFhEP2wmmchoB01ABmgIR0CJxbItDlYEdX2UKGgGR0BW3sx0uDjBaAdNQAZoCEdAiclTvZyuIXV9lChoBkdAWoPiT+vQnmgHTUAGaAhHQInNCUmlZYB1fZQoaAZHQFqQMH8jzI5oB01ABmgIR0CJ0ZubZvkzdX2UKGgGR0BXmEh7mdRSaAdNQAZoCEdAidoeMZP2wnV9lChoBkdAWRmylenhsWgHTUAGaAhHQInhm0LMLWt1fZQoaAZHQFLvElE7W/doB01ABmgIR0CJ6lIXj2i+dX2UKGgGR0BZ/JtvXK8taAdNQAZoCEdAifsA/s3Q2XV9lChoBkdAXT+mO2iL22gHTUAGaAhHQIoDV0A93bF1fZQoaAZHQFovzHjp9qloB01ABmgIR0CKD8w0waisdX2UKGgGR0BXxBGH58BuaAdNQAZoCEdAihIR5TqB3HV9lChoBkdAVzDfDUExI2gHTUAGaAhHQIpLt/OMVDd1fZQoaAZHwDS5WS2Yv39oB03PBWgIR0CKXg3DNyHVdX2UKGgGR0BZBbF0gbIcaAdNQAZoCEdAimbg/keZHHV9lChoBkdAVVBTqB3A22gHTUAGaAhHQIpm2t4iX6Z1fZQoaAZHwF2TwBHTZxtoB0tCaAhHQIprLebd8At1fZQoaAZHQFv0EC/47BBoB01ABmgIR0CKbaKArhBJdX2UKGgGR0BdT3jdYW+HaAdNQAZoCEdAim4hGx2SuHV9lChoBkdAVtOMvRJEpmgHTUAGaAhHQIpxsN8VpK11fZQoaAZHwDwi54GD+R5oB03cBWgIR0CKc5GdZq20dX2UKGgGR0BZOFdLQHAzaAdNQAZoCEdAinVfkeZG8XV9lChoBkdAVprLaEi+tmgHTUAGaAhHQIqE1T987ZF1fZQoaAZHwEOHw71ZkkNoB01xBGgIR0CKjgFzMibEdX2UKGgGR0BXn/vWpZOjaAdNQAZoCEdAio9Cr92ovXV9lChoBkdAWQo163RXwWgHTUAGaAhHQIq8dahYeT51fZQoaAZHQFe0fLs8gZFoB01ABmgIR0CKyaKUFB6bdX2UKGgGR0BW7o3m3fALaAdNQAZoCEdAis0FAE+xGHV9lChoBkdAWni7Xg9/0GgHTUAGaAhHQIrTW6ErXlN1fZQoaAZHwEiZGWD6FdtoB02OBGgIR0CK35Qfp2U0dX2UKGgGR0Bd196cAimmaAdNQAZoCEdAiuBiJoCdSXV9lChoBkdAWBk2Q4jrzGgHTUAGaAhHQIr4lPYWcjJ1fZQoaAZHQFgT8DSw4bVoB01ABmgIR0CLLIM5wOvudX2UKGgGR0BXdqPwNLDiaAdNQAZoCEdAiy8JYT0xunV9lChoBkdAWw/DgqEvkGgHTUAGaAhHQIsvgWBSUC91fZQoaAZHQFpAUb1h9b5oB01ABmgIR0CLM0cZLqUvdX2UKGgGR0BYa+VgQYk3aAdNQAZoCEdAizT59uxbCHV9lChoBkdAVk4sYl6Z6WgHTUAGaAhHQIs2ub5M10l1fZQoaAZHQF1dAwfyPMloB01ABmgIR0CLQqSbpeNUdX2UKGgGR0BbDHNTtLL7aAdNQAZoCEdAi0gH1e0G/3V9lChoBkdAWOyqCHymRGgHTUAGaAhHQItIwllbu+h1fZQoaAZHQFt6OOKfnOloB01ABmgIR0CLUAe6I3zddX2UKGgGR0Bcq0piI+GHaAdNQAZoCEdAi2JSoGY8dXV9lChoBkdAWOkDHOryUmgHTUAGaAhHQItoPT7VJ+V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |