import torch from open_clip import create_model from transformers import PretrainedConfig, PreTrainedModel from transformers.models.siglip.modeling_siglip import SiglipOutput from typing import Optional, Tuple, Union, List from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from transformers.utils import TensorType import string import ftfy import html def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def canonicalize_text( text, *, keep_punctuation_exact_string=None, trans_punctuation: dict = str.maketrans("", "", string.punctuation), ): """Returns canonicalized `text` (lowercase and punctuation removed). From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 Args: text: string to be canonicalized. keep_punctuation_exact_string: If provided, then this exact string kept. For example providing '{}' will keep any occurrences of '{}' (but will still remove '{' and '}' that appear separately). """ text = text.replace("_", " ") if keep_punctuation_exact_string: text = keep_punctuation_exact_string.join( part.translate(trans_punctuation) for part in text.split(keep_punctuation_exact_string) ) else: text = text.translate(trans_punctuation) text = text.lower() text = " ".join(text.split()) return text.strip() def _clean_canonicalize(x): # basic, remove whitespace, remove punctuation, lower case return canonicalize_text(basic_clean(x)) class MarqoFashionSigLIPConfig(PretrainedConfig): def __init__( self, open_clip_model_name: str = "", **kwargs, ): super().__init__(**kwargs) self.open_clip_model_name = open_clip_model_name class MarqoFashionSigLIPProcessor(ProcessorMixin): r""" Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor. [`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the [`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information. Args: image_processor ([`SiglipImageProcessor`]): The image processor is a required input. tokenizer ([`T5TokenizerFast`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "SiglipImageProcessor" tokenizer_class = "T5TokenizerFast" def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: int = None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` argument to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: if isinstance(text, str): text = [text] text = [_clean_canonicalize(raw_text) for raw_text in text] encoding = self.tokenizer( text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length ) if images is not None: try: images = [image.convert('RGB') for image in images] if isinstance(images, list) else images.convert('RGB') except: images = images image_features = self.image_processor(images, return_tensors=return_tensors) if text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchFeature(data=dict(**image_features), tensor_type=return_tensors) def decode(self, *args, **kwargs): """ This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) class MarqoFashionSigLIP(PreTrainedModel): config_class = MarqoFashionSigLIPConfig def __init__(self, config: MarqoFashionSigLIPConfig): super().__init__(config) self.config = config self.model = create_model(config.open_clip_model_name, output_dict=True) self.model.eval() self.model.to(self.device) def get_image_features( self, pixel_values: torch.FloatTensor, normalize: bool = False, **kwargs ) -> torch.FloatTensor: with torch.inference_mode(): image_features = self.model.encode_image(pixel_values, normalize=normalize) return image_features def get_text_features( self, input_ids: torch.Tensor, normalize: bool = False, **kwargs ) -> torch.FloatTensor: with torch.inference_mode(): text_features = self.model.encode_text(input_ids, normalize=normalize) return text_features def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SiglipOutput]: vision_outputs = self.get_image_features(pixel_values=pixel_values, normalize=True) text_outputs = self.get_text_features(input_ids=input_ids, normalize=True) logits_per_text = text_outputs @ vision_outputs.T logits_per_image = logits_per_text.T if not return_dict: return logits_per_image, logits_per_text, text_outputs, vision_outputs return SiglipOutput( logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_outputs, image_embeds=vision_outputs )