File size: 8,610 Bytes
0f15466
 
 
98f98f0
 
 
0eaa611
98f98f0
 
0eaa611
 
 
 
 
 
 
f053317
0eaa611
98f98f0
 
0eaa611
98f98f0
0eaa611
98f98f0
 
 
 
 
 
 
0b805dc
98f98f0
0b805dc
98f98f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f15466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c404f
0f15466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710fea8
 
 
 
98f98f0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
language:
- en
license: apache-2.0
tags:
- moe
base_model: M4-ai/TinyMistral-6x248M
datasets:
- Locutusque/hercules-v1.0
inference:
  parameters:
    do_sample: true
    temperature: 0.2
    top_p: 0.14
    top_k: 12
    max_new_tokens: 250
    repetition_penalty: 1.1
widget:
- text: '<|im_start|>user

    Write me a Python program that calculates the factorial of n. <|im_end|>

    <|im_start|>assistant

    '
- text: An emerging clinical approach to treat substance abuse disorders involves
    a form of cognitive-behavioral therapy whereby addicts learn to reduce their reactivity
    to drug-paired stimuli through cue-exposure or extinction training. It is, however,
- text: '<|im_start|>user

    How do I say hello in Spanish? <|im_end|>

    <|im_start|>assistant

    '
model-index:
- name: TinyMistral-6x248M-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 22.44
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 27.02
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.13
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 43.16
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.59
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
      name: Open LLM Leaderboard
---
# Model Card for M4-ai/TinyMistral-6x248M-Instruct

## Model Details

- **Model Name:** M4-ai/TinyMistral-6x248M-Instruct
- **Model Type:** Language Model (Mixture of Experts)
- **Fine-Tuning Base:** M4-ai/TinyMistral-6x248M
- **Developers:** M4-ai team
- **Fine-Tuning Dataset:** hercules-v1.0

## Model Description

M4-ai/TinyMistral-6x248M-Instruct is a fine-tuned language model based on a Mixture of Experts (MoE) architecture. It is an ensemble of various models that have been expertly combined using the LazyMergekit framework. The base pre-trained mixture model includes several versions of the TinyMistral model, with each expert tailored to specialize in different domains ranging from technical software development to multilingual text generation. This fine-tuned version specifically aims to enhance the model's performance on instructive tasks by leveraging the hercules-v1.0 dataset. The model is intended for applications requiring guidance, explanations, and analysis across a wide array of topics.

## Intended Use

M4-ai/TinyMistral-6x248M-Instruct is designed for developers and researchers who need a sophisticated language model capable of understanding and generating text in response to instructive prompts. The model is suitable for a variety of tasks, including but not limited to technical explanations, educational content, policy analysis, and problem-solving across disciplines such as computer science, history, and natural sciences. Users should be mindful of the model's limitations and potential biases, especially when dealing with sensitive topics.

## Training Data

The model was fine-tuned using the hercules-v1.0 dataset, which is an augmented version of the teknium/openhermes dataset. Hercules-v1.0 includes updated data sources like ise-uiuc/Magicoder-Evol-Instruct-110K, jondurbin/airoboros-3.2, and WizardLM/WizardLM_evol_instruct_V2_196k, as well as specialized datasets in mathematics, chemistry, physics, and biology. The dataset has been cleaned to remove RLHF refusals and potentially toxic content from airoboros-3.2. However, users should be aware that a small portion of the data might still contain sensitive content.

You can use the ChatML prompt format for this model.
## Limitations and Bias

While efforts have been made to clean the training data, the potential for biases and harmful content remains, as with any large language model. Users should exercise caution and discretion when utilizing the model, especially in applications that might amplify existing biases or expose users to sensitive content. The model is not recommended for scenarios requiring strict content moderation or for users without the ability to filter or assess the model's outputs critically.

## Evaluation

Performance degradation has been observed when using the Inference API; thus, the model is not recommended for this usage. Instead, users should follow the recommended inference parameters provided in the base model card to optimize performance.

## Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "M4-ai/TinyMistral-6x248M-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## Disclaimer
The model has been fine-tuned on the hercules-v1.0 dataset, which contains content from sources with known issues of toxic examples. Users of M4-ai/TinyMistral-6x248M-Instruct must acknowledge and agree to the following:

- The dataset may include "toxic"/"harmful" content, profanity, and sensitive material.
- The content does not necessarily reflect the beliefs or opinions of the developers.
- Users must comply with local laws regarding free speech and content use.
- Users assume full responsibility for the download and utilization of the dataset and model, indemnifying the developers from all liabilities.

## Contributions

Thanks to @jtatman, @aloobun, @Felladrin, and @Locutusque for their contributions to this model.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_M4-ai__TinyMistral-6x248M-Instruct)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |27.89|
|AI2 Reasoning Challenge (25-Shot)|22.44|
|HellaSwag (10-Shot)              |27.02|
|MMLU (5-Shot)                    |24.13|
|TruthfulQA (0-shot)              |43.16|
|Winogrande (5-shot)              |50.59|
|GSM8k (5-shot)                   | 0.00|