File size: 8,610 Bytes
0f15466 98f98f0 0eaa611 98f98f0 0eaa611 f053317 0eaa611 98f98f0 0eaa611 98f98f0 0eaa611 98f98f0 0b805dc 98f98f0 0b805dc 98f98f0 0f15466 c5c404f 0f15466 710fea8 98f98f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
language:
- en
license: apache-2.0
tags:
- moe
base_model: M4-ai/TinyMistral-6x248M
datasets:
- Locutusque/hercules-v1.0
inference:
parameters:
do_sample: true
temperature: 0.2
top_p: 0.14
top_k: 12
max_new_tokens: 250
repetition_penalty: 1.1
widget:
- text: '<|im_start|>user
Write me a Python program that calculates the factorial of n. <|im_end|>
<|im_start|>assistant
'
- text: An emerging clinical approach to treat substance abuse disorders involves
a form of cognitive-behavioral therapy whereby addicts learn to reduce their reactivity
to drug-paired stimuli through cue-exposure or extinction training. It is, however,
- text: '<|im_start|>user
How do I say hello in Spanish? <|im_end|>
<|im_start|>assistant
'
model-index:
- name: TinyMistral-6x248M-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 22.44
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 27.02
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.13
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.16
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.59
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/TinyMistral-6x248M-Instruct
name: Open LLM Leaderboard
---
# Model Card for M4-ai/TinyMistral-6x248M-Instruct
## Model Details
- **Model Name:** M4-ai/TinyMistral-6x248M-Instruct
- **Model Type:** Language Model (Mixture of Experts)
- **Fine-Tuning Base:** M4-ai/TinyMistral-6x248M
- **Developers:** M4-ai team
- **Fine-Tuning Dataset:** hercules-v1.0
## Model Description
M4-ai/TinyMistral-6x248M-Instruct is a fine-tuned language model based on a Mixture of Experts (MoE) architecture. It is an ensemble of various models that have been expertly combined using the LazyMergekit framework. The base pre-trained mixture model includes several versions of the TinyMistral model, with each expert tailored to specialize in different domains ranging from technical software development to multilingual text generation. This fine-tuned version specifically aims to enhance the model's performance on instructive tasks by leveraging the hercules-v1.0 dataset. The model is intended for applications requiring guidance, explanations, and analysis across a wide array of topics.
## Intended Use
M4-ai/TinyMistral-6x248M-Instruct is designed for developers and researchers who need a sophisticated language model capable of understanding and generating text in response to instructive prompts. The model is suitable for a variety of tasks, including but not limited to technical explanations, educational content, policy analysis, and problem-solving across disciplines such as computer science, history, and natural sciences. Users should be mindful of the model's limitations and potential biases, especially when dealing with sensitive topics.
## Training Data
The model was fine-tuned using the hercules-v1.0 dataset, which is an augmented version of the teknium/openhermes dataset. Hercules-v1.0 includes updated data sources like ise-uiuc/Magicoder-Evol-Instruct-110K, jondurbin/airoboros-3.2, and WizardLM/WizardLM_evol_instruct_V2_196k, as well as specialized datasets in mathematics, chemistry, physics, and biology. The dataset has been cleaned to remove RLHF refusals and potentially toxic content from airoboros-3.2. However, users should be aware that a small portion of the data might still contain sensitive content.
You can use the ChatML prompt format for this model.
## Limitations and Bias
While efforts have been made to clean the training data, the potential for biases and harmful content remains, as with any large language model. Users should exercise caution and discretion when utilizing the model, especially in applications that might amplify existing biases or expose users to sensitive content. The model is not recommended for scenarios requiring strict content moderation or for users without the ability to filter or assess the model's outputs critically.
## Evaluation
Performance degradation has been observed when using the Inference API; thus, the model is not recommended for this usage. Instead, users should follow the recommended inference parameters provided in the base model card to optimize performance.
## Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "M4-ai/TinyMistral-6x248M-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Disclaimer
The model has been fine-tuned on the hercules-v1.0 dataset, which contains content from sources with known issues of toxic examples. Users of M4-ai/TinyMistral-6x248M-Instruct must acknowledge and agree to the following:
- The dataset may include "toxic"/"harmful" content, profanity, and sensitive material.
- The content does not necessarily reflect the beliefs or opinions of the developers.
- Users must comply with local laws regarding free speech and content use.
- Users assume full responsibility for the download and utilization of the dataset and model, indemnifying the developers from all liabilities.
## Contributions
Thanks to @jtatman, @aloobun, @Felladrin, and @Locutusque for their contributions to this model.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_M4-ai__TinyMistral-6x248M-Instruct)
| Metric |Value|
|---------------------------------|----:|
|Avg. |27.89|
|AI2 Reasoning Challenge (25-Shot)|22.44|
|HellaSwag (10-Shot) |27.02|
|MMLU (5-Shot) |24.13|
|TruthfulQA (0-shot) |43.16|
|Winogrande (5-shot) |50.59|
|GSM8k (5-shot) | 0.00|
|