File size: 1,517 Bytes
739d3f1 fa50c2b 63d11ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
license: afl-3.0
metrics:
- accuracy
- code_eval
library_name: sklearn
pipeline_tag: text-classification
tags:
- clim
---
# bert-model-disaster-tweets-classification
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the Natural-Language-Processing-with-Disaster-Tweets dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.82
- F1 Score: 0.82
## Model description
Load BertForSequenceClassification, the pretrained BERT model with a single linear classification layer on top, using an optimizer : incorporates weight decay, which is a regularization technique that helps prevent overfitting during training.
## Intended uses & limitations
Use to classify if a tweet represents a disaster or not.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with epsilon = 1e-8.
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Epoch | Average training loss | Training epoch | Accuracy | F1 |
|:-----:|:---------------------:|:---------------:|:--------:|:----:|
| 1.0 | 0.47 | 0:00:49 | 0.82 | 0.82 |
| 2.0 | 0.36 | 0:00:36 | 0.82 | 0.82 |
| 3.0 | 0.29 | 0:00:51 | 0.82 | 0.82 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|