--- language: - "lzh" tags: - "classical chinese" - "literary chinese" - "ancient chinese" - "token-classification" - "pos" datasets: - "universal_dependencies" license: "mit" pipeline_tag: "token-classification" widget: - text: "不入虎穴不得虎子" --- [![Current PyPI packages](https://badge.fury.io/py/suparkanbun.svg)](https://pypi.org/project/suparkanbun/) # SuPar-Kanbun Tokenizer, POS-Tagger and Dependency-Parser for Classical Chinese Texts (漢文/文言文) with [spaCy](https://spacy.io), [Transformers](https://huggingface.co./transformers/) and [SuPar](https://github.com/yzhangcs/parser). ## Basic usage ```py >>> import suparkanbun >>> nlp=suparkanbun.load() >>> doc=nlp("不入虎穴不得虎子") >>> print(type(doc)) >>> print(suparkanbun.to_conllu(doc)) # text = 不入虎穴不得虎子 1 不 不 ADV v,副詞,否定,無界 Polarity=Neg 2 advmod _ Gloss=not|SpaceAfter=No 2 入 入 VERB v,動詞,行為,移動 _ 0 root _ Gloss=enter|SpaceAfter=No 3 虎 虎 NOUN n,名詞,主体,動物 _ 4 nmod _ Gloss=tiger|SpaceAfter=No 4 穴 穴 NOUN n,名詞,固定物,地形 Case=Loc 2 obj _ Gloss=cave|SpaceAfter=No 5 不 不 ADV v,副詞,否定,無界 Polarity=Neg 6 advmod _ Gloss=not|SpaceAfter=No 6 得 得 VERB v,動詞,行為,得失 _ 2 parataxis _ Gloss=get|SpaceAfter=No 7 虎 虎 NOUN n,名詞,主体,動物 _ 8 nmod _ Gloss=tiger|SpaceAfter=No 8 子 子 NOUN n,名詞,人,関係 _ 6 obj _ Gloss=child|SpaceAfter=No >>> import deplacy >>> deplacy.render(doc) 不 ADV <════╗ advmod 入 VERB ═══╗═╝═╗ ROOT 虎 NOUN <╗ ║ ║ nmod 穴 NOUN ═╝<╝ ║ obj 不 ADV <════╗ ║ advmod 得 VERB ═══╗═╝<╝ parataxis 虎 NOUN <╗ ║ nmod 子 NOUN ═╝<╝ obj ``` `suparkanbun.load()` has two options `suparkanbun.load(BERT="roberta-classical-chinese-base-char",Danku=False)`. With the option `Danku=True` the pipeline tries to segment sentences automatically. Available `BERT` options are: * `BERT="roberta-classical-chinese-base-char"` utilizes [roberta-classical-chinese-base-char](https://huggingface.co./KoichiYasuoka/roberta-classical-chinese-base-char) (default) * `BERT="roberta-classical-chinese-large-char"` utilizes [roberta-classical-chinese-large-char](https://huggingface.co./KoichiYasuoka/roberta-classical-chinese-large-char) * `BERT="guwenbert-base"` utilizes [GuwenBERT-base](https://huggingface.co./ethanyt/guwenbert-base) * `BERT="guwenbert-large"` utilizes [GuwenBERT-large](https://huggingface.co./ethanyt/guwenbert-large) * `BERT="sikubert"` utilizes [SikuBERT](https://huggingface.co./SIKU-BERT/sikubert) * `BERT="sikuroberta"` utilizes [SikuRoBERTa](https://huggingface.co./SIKU-BERT/sikuroberta) ## Installation for Linux ```sh pip3 install suparkanbun --user ``` ## Installation for Cygwin64 Make sure to get `python37-devel` `python37-pip` `python37-cython` `python37-numpy` `python37-wheel` `gcc-g++` `mingw64-x86_64-gcc-g++` `git` `curl` `make` `cmake` packages, and then: ```sh curl -L https://raw.githubusercontent.com/KoichiYasuoka/CygTorch/master/installer/supar.sh | sh pip3.7 install suparkanbun --no-build-isolation ``` ## Installation for Jupyter Notebook (Google Colaboratory) ```py !pip install suparkanbun ``` Try [notebook](https://colab.research.google.com/github/KoichiYasuoka/SuPar-Kanbun/blob/main/suparkanbun.ipynb) for Google Colaboratory. ## Author Koichi Yasuoka (安岡孝一)