KinGeorge commited on
Commit
1823835
1 Parent(s): 4e9f382
README.md CHANGED
@@ -6,7 +6,7 @@ tags:
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
- - name: PPO
10
  results:
11
  - task:
12
  type: reinforcement-learning
@@ -16,13 +16,13 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 256.75 +/- 16.72
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
- # **PPO** Agent playing **LunarLander-v2**
25
- This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
 
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
+ - name: ppo-mlp
10
  results:
11
  - task:
12
  type: reinforcement-learning
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 274.44 +/- 22.70
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **ppo-mlp** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo-mlp** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x798192d3ad40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x798192d3add0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x798192d3ae60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x798192d3aef0>", "_build": "<function ActorCriticPolicy._build at 0x798192d3af80>", "forward": "<function ActorCriticPolicy.forward at 0x798192d3b010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x798192d3b0a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x798192d3b130>", "_predict": "<function ActorCriticPolicy._predict at 0x798192d3b1c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x798192d3b250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x798192d3b2e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x798192d3b370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x798192d3cd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702087206087709236, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpp/bqPplq67/KJO980JDhUSwM64hHwtwAAgD8AAIA/AJivvFzffbp+eew3MYT6MlHf6TqgLgq3AACAPwAAgD8zpvc8FECOuqo4zDkUZNg1pWncugaP0DQAAIA/AACAPzN4x7zhjI66rGymOX1hKLXvwC86W/vAuAAAgD8AAIA/JsCAPe5X8z6yaGm7mXNxvrTVlDwhNDC8AAAAAAAAAABm2Dq9KShJuuF6lLpT7MW1jjMhOktDrjkAAIA/AACAP5oFFj3DtRO4usGTuWb6WLR++aS45SKtOAAAgD8AAIA/M8wHvXtSn7pLqqo79gW0NJpCrbphCqQzAACAPwAAgD8aRCC9RD3aPiZlczzXDXq+lbGAvWBjnjsAAAAAAAAAADNzdjrDhWk5a1wuuOSqb7Panzk68NhVNwAAgD8AAIA/TQ9SPQXSEz5+viS+9o2IviAivr2W1za9AAAAAAAAAABNVvu9NIQUPqKkgz5qXoG+C5SGPSiWWz0AAAAAAAAAAGbInTyuJ4a42qaMu35eNjgQq7Q732UvOgAAgD8AAIA/5kjEPTgovD5W8vG9kq1mvnzLzTw4woy9AAAAAAAAAADmtTc9rk2Tuu1kirpNxEM2PATIOtIqoDkAAIA/AACAPzMr1rt77qW651g5Og1+KzWEziE6+/lUuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOaFhG6PKeMAWyUTegDjAF0lEdAkdU3V5KODXV9lChoBkdAXiLWjGkvb2gHTegDaAhHQJHXbT5O8Ch1fZQoaAZHQGIzJ2MbWEtoB03oA2gIR0CR2H7TDwYtdX2UKGgGR0BjrhmCiAUdaAdN6ANoCEdAkdrSOWBz3nV9lChoBkdAYoFMWXTmXGgHTegDaAhHQJHeZiWmgrZ1fZQoaAZHQGhgmiYb83xoB03oA2gIR0CR32JKaodddX2UKGgGR0BkiI7HQyAQaAdN6ANoCEdAkeJGSEDhcnV9lChoBkdAZMo8AaNuL2gHTegDaAhHQJHqHjS5RTF1fZQoaAZHQGYCI9LYf4hoB03oA2gIR0CR9JquKXOXdX2UKGgGR0BmM9Q2uPmxaAdN6ANoCEdAkfVM85jpcHV9lChoBkdAYuG9VWCEpWgHTegDaAhHQJH32GATZg51fZQoaAZHQGJko0ALiMpoB03oA2gIR0CSF02ZRbbDdX2UKGgGR0BlkdnM+u/2aAdN6ANoCEdAkhk8QyylenV9lChoBkdAYi9grH2h7GgHTegDaAhHQJIbzgBLf1p1fZQoaAZHQGHZGmce8wpoB03oA2gIR0CSH/GRV6u5dX2UKGgGR0BgSmXsw+MZaAdN6ANoCEdAkiSkhvBJqnV9lChoBkdAYgNakhzNlmgHTegDaAhHQJIuaUs4DLd1fZQoaAZHQF76f9xZMcpoB03oA2gIR0CSMPq1PWQPdX2UKGgGR0BkDBggHNX6aAdN6ANoCEdAkjIin1nM+3V9lChoBkdAS/ycNH6MzmgHTUABaAhHQJIzbt5UtI11fZQoaAZHQGPehW5paidoB03oA2gIR0CSNPVAAyVOdX2UKGgGR0BnpoRywOe8aAdN6ANoCEdAkjktlVcUunV9lChoBkdAYitjvuw5emgHTegDaAhHQJI6M30f5k91fZQoaAZHQGJZC2c8TzxoB03oA2gIR0CSPQ2+wkgPdX2UKGgGR0BinPZ5AyEdaAdN6ANoCEdAkkRU0aZQYXV9lChoBkdAX0qgYgq3E2gHTegDaAhHQJJLuDujRD11fZQoaAZHQGDUkqtozvZoB03oA2gIR0CSTCpiqhlEdX2UKGgGR0BmDoyCWeH0aAdN6ANoCEdAkk3v3N9piHV9lChoBkdAbfKsNlRP42gHTaMDaAhHQJJp8Dq4YrJ1fZQoaAZHv/n0TURWcSZoB00WAWgIR0CScFVcUucudX2UKGgGR0BnIHGjsUqQaAdN6ANoCEdAknK3wsoUjHV9lChoBkdAZwwNOuaF22gHTegDaAhHQJJ2UI+nqFB1fZQoaAZHQGDa7F85S3toB03oA2gIR0CSeXK4x1xLdX2UKGgGR0BmXig9Net0aAdN6ANoCEdAkoBO6iCaqnV9lChoBkdAZRX6KtPpIWgHTegDaAhHQJKCryf+S8t1fZQoaAZHQFvgnIyTINpoB03oA2gIR0CSg88dgfEGdX2UKGgGR0BhJxvUBnzyaAdN6ANoCEdAkoT3Vsk6cXV9lChoBkdAZFtV/+bVjWgHTegDaAhHQJKGYaMrEtN1fZQoaAZHQGPXjMFEAo5oB03oA2gIR0CSimRq46OpdX2UKGgGR0BnVr9qDbrUaAdN6ANoCEdAkottoBaLXXV9lChoBkdAXhrGgi/wiWgHTegDaAhHQJKPf/GVAzJ1fZQoaAZHQEgptu1ndwhoB00JAWgIR0CSkcXxOLzgdX2UKGgGR0Bi9VCJGe+VaAdN6ANoCEdAkpkmCAc1fnV9lChoBkdAZLW4gA6uGWgHTegDaAhHQJKhdQ0oBq91fZQoaAZHQFy8schkiEBoB03oA2gIR0CSo3+Y+jdpdX2UKGgGR0Blft36hxo7aAdN6ANoCEdAkr2/Zh8YynV9lChoBkdAYM1S8an752gHTegDaAhHQJLFTs/pt791fZQoaAZHQF+E+fywwCdoB03oA2gIR0CSyI88cMmXdX2UKGgGR0BhyY+EAYHgaAdN6ANoCEdAks12bTc7AHV9lChoBkdAYBc8QI2OyWgHTegDaAhHQJLRT1vl2eR1fZQoaAZHwAfmtZFG5MFoB00CAWgIR0CS2MEPUaybdX2UKGgGR0BoXBMxoIv8aAdN6ANoCEdAktpO09hZyXV9lChoBkdAYwqVt4zJp2gHTegDaAhHQJLbZkiD/VB1fZQoaAZHQGH8vpY9xIdoB03oA2gIR0CS3JqcEvCedX2UKGgGR0Bk7TW07bL2aAdN6ANoCEdAkt3y1Z1V53V9lChoBkdAZ2o5LAYYSGgHTegDaAhHQJLhd9d/rjZ1fZQoaAZHQGae0vf0mMRoB03oA2gIR0CS4nGSZBszdX2UKGgGR0BjL7ZOBUaRaAdN6ANoCEdAkuVDRQaaTnV9lChoBkdAYRmExIre7GgHTegDaAhHQJLm1sKsuFp1fZQoaAZHQGSIiDmKZUloB03oA2gIR0CS66ka/ATJdX2UKGgGR0Bkxj4Ju2qlaAdN6ANoCEdAkvLy+Yc/+3V9lChoBkdAb8GecQRPGmgHTaoBaAhHQJLz8Bnzxw11fZQoaAZHQGG3/CAMDwJoB03oA2gIR0CS9KvNu+AVdX2UKGgGR0Bw6qYfGMn7aAdN+wFoCEdAkvZUaZQYUHV9lChoBkdAZtkjxCpm3GgHTegDaAhHQJMPZ0GNaQp1fZQoaAZHQGCCeJYT0xxoB03oA2gIR0CTF13hXKbKdX2UKGgGR0BBJaqCHymRaAdL9mgIR0CTF199+gDidX2UKGgGR0Bi2CVSn+AFaAdN6ANoCEdAkxsvAoG6gHV9lChoBkdAZAbnPmganGgHTegDaAhHQJMd75M10kp1fZQoaAZHQHBryvgWJrNoB01AAmgIR0CTIBB3Roh7dX2UKGgGR0BtrFNet0V8aAdNkQNoCEdAkyQeDzyz5XV9lChoBkdAZcGa99MK1GgHTegDaAhHQJMkOLZSNwR1fZQoaAZHQHEVsMNMGotoB03/AmgIR0CTJR8Zk079dX2UKGgGR0Bj82BnSOR1aAdN6ANoCEdAkyYxLGrCFnV9lChoBkdAZC8m0E5hjWgHTegDaAhHQJMrgevIOpd1fZQoaAZHQGiIgi/wiJRoB03oA2gIR0CTLGR3eN1hdX2UKGgGR0Bg33dO6/ZeaAdN6ANoCEdAky+apT/ACXV9lChoBkdAcJSZZjhDPWgHTTcBaAhHQJM2WWhRIjJ1fZQoaAZHQGWJMA3kxRFoB03oA2gIR0CTQYpuMuOCdX2UKGgGR0BlejMotthvaAdN6ANoCEdAk0KQQHzH0nV9lChoBkdAZryq6OHWSWgHTegDaAhHQJNDV0knkT91fZQoaAZHQGeeSrxRVIZoB03oA2gIR0CTXRKK508vdX2UKGgGR0BmIREORT0haAdN6ANoCEdAk2aeFtbcGnV9lChoBkdAYwQXF98Z1mgHTegDaAhHQJNmowqRU3p1fZQoaAZHQGUbjh99c8loB03oA2gIR0CTa4zxwyZbdX2UKGgGR0BgV/XsgMc7aAdN6ANoCEdAk29h51Ng0HV9lChoBkdAWo9yjpLVWmgHTegDaAhHQJNyjysjmjl1fZQoaAZHQGKb6pxWDHxoB03oA2gIR0CTd5odMj/udX2UKGgGR0BgT0cMmWt2aAdN6ANoCEdAk3i4ZqEeyXV9lChoBkdAYq2Si/O+qWgHTegDaAhHQJN55KqXF991fZQoaAZHQG/zYigTRIBoB00uA2gIR0CTfkC3gDRudX2UKGgGR0BkJuixmkFfaAdN6ANoCEdAk3+XnZCfH3V9lChoBkdAZkd6Q/5ckmgHTegDaAhHQJOAe8IzFdd1fZQoaAZHQGSQmsV+I/JoB03oA2gIR0CTgygrYoRadX2UKGgGR0BwXt/mT1TSaAdNQgJoCEdAk4NcuBczInV9lChoBkdAQ/ib4Ju2qmgHS9BoCEdAk46/IXCTEHV9lChoBkdAbWCkUKzAvmgHTVcCaAhHQJOO7WkJrtV1fZQoaAZHQGI3oInjQzFoB03oA2gIR0CTkTO/cnE3dX2UKGgGR0BiwC26TW5IaAdN6ANoCEdAk5IZbQkX13V9lChoBkdAYEDWEK3NLWgHTegDaAhHQJOSwYixFAp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fbb48790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fbb48820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fbb488b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fbb48940>", "_build": "<function ActorCriticPolicy._build at 0x7f32fbb489d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f32fbb48a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32fbb48af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fbb48b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32fbb48c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fbb48ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fbb48d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fbb48dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f32fbb40940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710058658386329806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZGJz7pfBM/YKQ9vvevpb6365Q9EHDZvQAAAAAAAAAAZihyPduQuT3q4bC9IS2MvowgbDw2XU69AAAAAAAAAACmh/Q9+wMTPx7UIr5G4aG+chwAvKHBE70AAAAAAAAAAJppL7zD+T66Xmmgupp0GrVzaYy7bnG8OQAAgD8AAIA/s6U8PsK2JT/yCIm+cUCxvl1TjT3mcPC9AAAAAAAAAAAaCH29y4/FPvY/oj0TfZ++3lKAvBFNjz0AAAAAAAAAAM2cATtxEeQ9xohePvy9fL6e1d89M2zvvQAAAAAAAAAA0z8LvjgPLz++fTQ+u2zTvsscgb3WQAo9AAAAAAAAAACD2Uy+OImjPklXgT6jKli+5QmEuZ/JzD0AAAAAAAAAAABkQ7zDESq65TxHM4FiPjCOZhW6osDFswAAgD8AAIA/AAB4urgu3rmds+K1QJfxsDS1ETsUEQY1AACAPwAAgD8Nlpa9AVSFP0xaIb4BF9S+e3bNvVENGzwAAAAAAAAAAGarxTwD1BE//eekvZBbub5YQDm8s2VivQAAAAAAAAAAGvmrPQ8aVz2j4wQ9GKeFvsnO4TxHsks9AAAAAAAAAABa4Fa+i2mBP7D3cb6yweK+Btdevsrjlj0AAAAAAAAAAE2Ng73X3Cy7lHCQO4Q9jTxzSrU85lpzvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGB1uBMBZKMAWyUTQgBjAF0lEdAlhooc3l0YHV9lChoBkdAbWutxuKoAGgHS/1oCEdAlhtw7DEWI3V9lChoBkdAbdXWpZOi4GgHTSUBaAhHQJYb/sVtXPt1fZQoaAZHQHHRcfzSThZoB00PAWgIR0CWHE5ggHNYdX2UKGgGR0BwlHFqBVdYaAdNIQFoCEdAlhys8kleGHV9lChoBkdAbj1fiPyTZGgHTYwBaAhHQJYc+vUz9CN1fZQoaAZHQHK830kGA09oB02gAWgIR0CWHc8Gs3hodX2UKGgGR0BxzRWyTpxFaAdNAAFoCEdAlh3gMH8jzXV9lChoBkdAcl7zOX3QD2gHTY8BaAhHQJYd6yJKraN1fZQoaAZHQHJQz+ee4CpoB00GAWgIR0CWH0v0yxiYdX2UKGgGR0BzCMHbAUL2aAdL+WgIR0CWH3WxhUiqdX2UKGgGR0ByN9VxS5y3aAdNDwFoCEdAliDbAHmig3V9lChoBkdAcBVxdIGyHGgHTS8BaAhHQJYg9r56+nJ1fZQoaAZHQHDoDT8YQ8RoB00SAWgIR0CWIVwAEMb4dX2UKGgGR0BvYRCv5gw5aAdNeAFoCEdAliNMWj4593V9lChoBkdAcOLr3j+72GgHS/hoCEdAliNWzfJmunV9lChoBkdAcDrzRQaaTmgHS/BoCEdAliPXOKO1fHV9lChoBkdAcGjJ2MbWE2gHTT4BaAhHQJYj6HYYixF1fZQoaAZHQHKy7M5fdARoB01yAWgIR0CWJCAqNIbwdX2UKGgGR0BwwfiuMdcTaAdNFwFoCEdAliSfK2a2F3V9lChoBkdAbYtSCvovBmgHTTMBaAhHQJYksQf6oEV1fZQoaAZHQG83A8bJfY1oB0v2aAhHQJYlMm7aqS51fZQoaAZHQG6byCe2/i5oB00vAWgIR0CWJclzEJjUdX2UKGgGR0Bx9NfzBhx6aAdNSgFoCEdAlidxf8dgfHV9lChoBkdAcupX1J17pmgHTRMBaAhHQJYnmltTDO11fZQoaAZHQHFZQbVBlc1oB013AWgIR0CWKNq//NqydX2UKGgGR0Bvpi5wwTM8aAdNVwFoCEdAlimsebNKRXV9lChoBkdAcO0fmLcbi2gHS/loCEdAlirfYao/A3V9lChoBkdAcRQoexOclWgHS/xoCEdAliuR37k4m3V9lChoBkdAbJ+ya/h2n2gHS/doCEdAlixyQYDT0HV9lChoBkdAcRpvK2a2F2gHTQ4BaAhHQJYsj30wrUd1fZQoaAZHQHDuAJgLJCBoB01lAWgIR0CWLKp/gBLgdX2UKGgGR0BwfNkH2RJVaAdNdwFoCEdAliy0/bCaZ3V9lChoBkdAcgECDVYp2GgHTXoBaAhHQJYs5D7ZWaN1fZQoaAZHQHMM8oDxLChoB00+AWgIR0CWLUG7BfrsdX2UKGgGR0BzIwYGdI5HaAdNHAFoCEdAli4hIe5nUXV9lChoBkdAbUJb3XZoPGgHTWABaAhHQJYupfmcOLB1fZQoaAZHQG9iAntv4udoB00rAWgIR0CWLzDTSb6QdX2UKGgGR0BxpadmQKa5aAdNAgFoCEdAli+q99MK1HV9lChoBkdAbD6y57PY4GgHTTQBaAhHQJYxTZcs1891fZQoaAZHQHLP/d/J/5NoB00PAWgIR0CWMhoOQQtjdX2UKGgGR0BxvWG34Kx+aAdNKQFoCEdAljIjWGyooHV9lChoBkdAbzWidJ8OTmgHTc0BaAhHQJYypB9kSVZ1fZQoaAZHQHKs8JhOP/9oB00BAWgIR0CWRweJpFkQdX2UKGgGR0BvEjPSlWOqaAdNEAFoCEdAlkdWCmMwUXV9lChoBkdAcRwxGlQ/HGgHTRoBaAhHQJZHi3/givB1fZQoaAZHQG4QYwh4dIZoB00GAWgIR0CWR6s2NvOydX2UKGgGR0BzE2ioKlYVaAdNTAFoCEdAlke8lkYoAnV9lChoBkdAcTR8FINEw2gHTScBaAhHQJZIBQhwEQp1fZQoaAZHQHIliTY/Vy5oB00CAWgIR0CWSHChvitJdX2UKGgGR0BxFc0xdpqRaAdNWwFoCEdAlkizvZyuIXV9lChoBkdAce5tx+8XemgHTQEBaAhHQJZI8bHZK4B1fZQoaAZHQHGVk65oXbdoB00MAWgIR0CWSbW8yvcKdX2UKGgGR0Bu0+tr9EThaAdNCQFoCEdAlkocny/bkHV9lChoBkdAby/bjcVQAWgHS/VoCEdAlkvWShakh3V9lChoBkdAbC6F2V3Ux2gHS/9oCEdAlkwcUAT7EnV9lChoBkdAcI+A7xNIsmgHTSwBaAhHQJZMriJfpll1fZQoaAZHQHL60H6dlNFoB005AWgIR0CWTn4QjD8+dX2UKGgGR0BuL7wKBun/aAdL/GgIR0CWTrWJ79hrdX2UKGgGR0ByMIV/MGHIaAdL3GgIR0CWTuDwpe/pdX2UKGgGR0ByfvFUADJVaAdL+GgIR0CWTuh99c8ldX2UKGgGR0BvE0gyM1jzaAdNGwJoCEdAlk78ox59mnV9lChoBkdAcdlwgkka/GgHTUQBaAhHQJZQpGI9C/p1fZQoaAZHQHOBm38XN1RoB00mAWgIR0CWUKrsSkCWdX2UKGgGR0Bwld8MNMGpaAdNFgFoCEdAllDxBqsU7HV9lChoBkdAcgGIYWLxZ2gHTUcBaAhHQJZRW6K+BYp1fZQoaAZHQHCEVyaNMoNoB00GAWgIR0CWUgbKzRhMdX2UKGgGR0BxDcMuvlltaAdNOAFoCEdAllIkhmoR7XV9lChoBkdAcNoJ8fFJhGgHTWoBaAhHQJZSM4EOiFl1fZQoaAZHQHEszm8ujAVoB00qAWgIR0CWUo6p5u63dX2UKGgGR0ByB2LuQZGbaAdL62gIR0CWUtqDK5kLdX2UKGgGR0BtcrqB3A2yaAdNAQFoCEdAllOPub7TD3V9lChoBkdAb+UVqveP72gHS+toCEdAllTxtUGVzXV9lChoBkdAcPKkxREWqWgHTSgBaAhHQJZVHlr/Khd1fZQoaAZHQHJ4761stTVoB0v1aAhHQJZViLuQZGd1fZQoaAZHQHHlqg/TsppoB00YAWgIR0CWVpnPmgandX2UKGgGR0BwUJKujh1laAdNKQFoCEdAllbfek56t3V9lChoBkdAbaO+zMRpUWgHTQkBaAhHQJZX2IznA7B1fZQoaAZHQHCYrGipNsZoB0vjaAhHQJZYWrU9ZA91fZQoaAZHQHGbAUcn3L5oB0voaAhHQJZYcx9G7SR1fZQoaAZHQHBGQm/nGKhoB00TAWgIR0CWWHqZtvXLdX2UKGgGR0BzJVCXyAhCaAdNHwFoCEdAlliUVafSQnV9lChoBkdAcGL6zVtoBmgHTWIBaAhHQJZYx0NjLB91fZQoaAZHQD2If9xZMcpoB0veaAhHQJZY+KekHlh1fZQoaAZHQHFwuk1uR9xoB00ZAWgIR0CWWZm03Ov/dX2UKGgGR0Bwlw12q1gIaAdNQwFoCEdAlloOQp4KQnV9lChoBkdAcueBHkLhJmgHS+9oCEdAllop8jRlYnV9lChoBkdAcbB3X7Lt/mgHS+ZoCEdAllvDYmLLp3V9lChoBkdAbxKUB4lhPWgHTX0BaAhHQJZcp/iHZbp1fZQoaAZHQHMbbiyY5T9oB00jAWgIR0CWXQmtQsPKdX2UKGgGR0ByxJLAYYR/aAdNKQFoCEdAll0OE7GNrHV9lChoBkdAcWTxTKkl/2gHTQoBaAhHQJZeH8Muvll1fZQoaAZHQHD+uk+HJtBoB00hAWgIR0CWXo3mV7hOdX2UKGgGR0Bw5ylP8AJcaAdL9WgIR0CWXuL5AQg+dX2UKGgGR0BuOyTt9hJAaAdL/GgIR0CWXzFPi1iOdX2UKGgGR0ByCNMsYl6aaAdNFgFoCEdAll9wxi5NGnV9lChoBkdAcHmEXcgyM2gHTQIBaAhHQJZfg+yJKrd1fZQoaAZHQHGB9QGfPHFoB00NAWgIR0CWX7OpsGgSdX2UKGgGR0BxcQ4OtnwoaAdL72gIR0CWYLkcS5AhdX2UKGgGR0BvTRCUornUaAdL/WgIR0CWYP3+dbxFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b2ef29bc50fd5516ccde46505c9f1cace09a07dbafac9328adc9bd3412e0543
3
- size 148054
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a02a74247a628bf1a50add00a09f09ba6ef8e88ae1ae692fa8fc212d602b7233
3
+ size 148052
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x798192d3ad40>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x798192d3add0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x798192d3ae60>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x798192d3aef0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x798192d3af80>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x798192d3b010>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x798192d3b0a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x798192d3b130>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x798192d3b1c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x798192d3b250>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x798192d3b2e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x798192d3b370>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x798192d3cd80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1702087206087709236,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpp/bqPplq67/KJO980JDhUSwM64hHwtwAAgD8AAIA/AJivvFzffbp+eew3MYT6MlHf6TqgLgq3AACAPwAAgD8zpvc8FECOuqo4zDkUZNg1pWncugaP0DQAAIA/AACAPzN4x7zhjI66rGymOX1hKLXvwC86W/vAuAAAgD8AAIA/JsCAPe5X8z6yaGm7mXNxvrTVlDwhNDC8AAAAAAAAAABm2Dq9KShJuuF6lLpT7MW1jjMhOktDrjkAAIA/AACAP5oFFj3DtRO4usGTuWb6WLR++aS45SKtOAAAgD8AAIA/M8wHvXtSn7pLqqo79gW0NJpCrbphCqQzAACAPwAAgD8aRCC9RD3aPiZlczzXDXq+lbGAvWBjnjsAAAAAAAAAADNzdjrDhWk5a1wuuOSqb7Panzk68NhVNwAAgD8AAIA/TQ9SPQXSEz5+viS+9o2IviAivr2W1za9AAAAAAAAAABNVvu9NIQUPqKkgz5qXoG+C5SGPSiWWz0AAAAAAAAAAGbInTyuJ4a42qaMu35eNjgQq7Q732UvOgAAgD8AAIA/5kjEPTgovD5W8vG9kq1mvnzLzTw4woy9AAAAAAAAAADmtTc9rk2Tuu1kirpNxEM2PATIOtIqoDkAAIA/AACAPzMr1rt77qW651g5Og1+KzWEziE6+/lUuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOaFhG6PKeMAWyUTegDjAF0lEdAkdU3V5KODXV9lChoBkdAXiLWjGkvb2gHTegDaAhHQJHXbT5O8Ch1fZQoaAZHQGIzJ2MbWEtoB03oA2gIR0CR2H7TDwYtdX2UKGgGR0BjrhmCiAUdaAdN6ANoCEdAkdrSOWBz3nV9lChoBkdAYoFMWXTmXGgHTegDaAhHQJHeZiWmgrZ1fZQoaAZHQGhgmiYb83xoB03oA2gIR0CR32JKaodddX2UKGgGR0BkiI7HQyAQaAdN6ANoCEdAkeJGSEDhcnV9lChoBkdAZMo8AaNuL2gHTegDaAhHQJHqHjS5RTF1fZQoaAZHQGYCI9LYf4hoB03oA2gIR0CR9JquKXOXdX2UKGgGR0BmM9Q2uPmxaAdN6ANoCEdAkfVM85jpcHV9lChoBkdAYuG9VWCEpWgHTegDaAhHQJH32GATZg51fZQoaAZHQGJko0ALiMpoB03oA2gIR0CSF02ZRbbDdX2UKGgGR0BlkdnM+u/2aAdN6ANoCEdAkhk8QyylenV9lChoBkdAYi9grH2h7GgHTegDaAhHQJIbzgBLf1p1fZQoaAZHQGHZGmce8wpoB03oA2gIR0CSH/GRV6u5dX2UKGgGR0BgSmXsw+MZaAdN6ANoCEdAkiSkhvBJqnV9lChoBkdAYgNakhzNlmgHTegDaAhHQJIuaUs4DLd1fZQoaAZHQF76f9xZMcpoB03oA2gIR0CSMPq1PWQPdX2UKGgGR0BkDBggHNX6aAdN6ANoCEdAkjIin1nM+3V9lChoBkdAS/ycNH6MzmgHTUABaAhHQJIzbt5UtI11fZQoaAZHQGPehW5paidoB03oA2gIR0CSNPVAAyVOdX2UKGgGR0BnpoRywOe8aAdN6ANoCEdAkjktlVcUunV9lChoBkdAYitjvuw5emgHTegDaAhHQJI6M30f5k91fZQoaAZHQGJZC2c8TzxoB03oA2gIR0CSPQ2+wkgPdX2UKGgGR0BinPZ5AyEdaAdN6ANoCEdAkkRU0aZQYXV9lChoBkdAX0qgYgq3E2gHTegDaAhHQJJLuDujRD11fZQoaAZHQGDUkqtozvZoB03oA2gIR0CSTCpiqhlEdX2UKGgGR0BmDoyCWeH0aAdN6ANoCEdAkk3v3N9piHV9lChoBkdAbfKsNlRP42gHTaMDaAhHQJJp8Dq4YrJ1fZQoaAZHv/n0TURWcSZoB00WAWgIR0CScFVcUucudX2UKGgGR0BnIHGjsUqQaAdN6ANoCEdAknK3wsoUjHV9lChoBkdAZwwNOuaF22gHTegDaAhHQJJ2UI+nqFB1fZQoaAZHQGDa7F85S3toB03oA2gIR0CSeXK4x1xLdX2UKGgGR0BmXig9Net0aAdN6ANoCEdAkoBO6iCaqnV9lChoBkdAZRX6KtPpIWgHTegDaAhHQJKCryf+S8t1fZQoaAZHQFvgnIyTINpoB03oA2gIR0CSg88dgfEGdX2UKGgGR0BhJxvUBnzyaAdN6ANoCEdAkoT3Vsk6cXV9lChoBkdAZFtV/+bVjWgHTegDaAhHQJKGYaMrEtN1fZQoaAZHQGPXjMFEAo5oB03oA2gIR0CSimRq46OpdX2UKGgGR0BnVr9qDbrUaAdN6ANoCEdAkottoBaLXXV9lChoBkdAXhrGgi/wiWgHTegDaAhHQJKPf/GVAzJ1fZQoaAZHQEgptu1ndwhoB00JAWgIR0CSkcXxOLzgdX2UKGgGR0Bi9VCJGe+VaAdN6ANoCEdAkpkmCAc1fnV9lChoBkdAZLW4gA6uGWgHTegDaAhHQJKhdQ0oBq91fZQoaAZHQFy8schkiEBoB03oA2gIR0CSo3+Y+jdpdX2UKGgGR0Blft36hxo7aAdN6ANoCEdAkr2/Zh8YynV9lChoBkdAYM1S8an752gHTegDaAhHQJLFTs/pt791fZQoaAZHQF+E+fywwCdoB03oA2gIR0CSyI88cMmXdX2UKGgGR0BhyY+EAYHgaAdN6ANoCEdAks12bTc7AHV9lChoBkdAYBc8QI2OyWgHTegDaAhHQJLRT1vl2eR1fZQoaAZHwAfmtZFG5MFoB00CAWgIR0CS2MEPUaybdX2UKGgGR0BoXBMxoIv8aAdN6ANoCEdAktpO09hZyXV9lChoBkdAYwqVt4zJp2gHTegDaAhHQJLbZkiD/VB1fZQoaAZHQGH8vpY9xIdoB03oA2gIR0CS3JqcEvCedX2UKGgGR0Bk7TW07bL2aAdN6ANoCEdAkt3y1Z1V53V9lChoBkdAZ2o5LAYYSGgHTegDaAhHQJLhd9d/rjZ1fZQoaAZHQGae0vf0mMRoB03oA2gIR0CS4nGSZBszdX2UKGgGR0BjL7ZOBUaRaAdN6ANoCEdAkuVDRQaaTnV9lChoBkdAYRmExIre7GgHTegDaAhHQJLm1sKsuFp1fZQoaAZHQGSIiDmKZUloB03oA2gIR0CS66ka/ATJdX2UKGgGR0Bkxj4Ju2qlaAdN6ANoCEdAkvLy+Yc/+3V9lChoBkdAb8GecQRPGmgHTaoBaAhHQJLz8Bnzxw11fZQoaAZHQGG3/CAMDwJoB03oA2gIR0CS9KvNu+AVdX2UKGgGR0Bw6qYfGMn7aAdN+wFoCEdAkvZUaZQYUHV9lChoBkdAZtkjxCpm3GgHTegDaAhHQJMPZ0GNaQp1fZQoaAZHQGCCeJYT0xxoB03oA2gIR0CTF13hXKbKdX2UKGgGR0BBJaqCHymRaAdL9mgIR0CTF199+gDidX2UKGgGR0Bi2CVSn+AFaAdN6ANoCEdAkxsvAoG6gHV9lChoBkdAZAbnPmganGgHTegDaAhHQJMd75M10kp1fZQoaAZHQHBryvgWJrNoB01AAmgIR0CTIBB3Roh7dX2UKGgGR0BtrFNet0V8aAdNkQNoCEdAkyQeDzyz5XV9lChoBkdAZcGa99MK1GgHTegDaAhHQJMkOLZSNwR1fZQoaAZHQHEVsMNMGotoB03/AmgIR0CTJR8Zk079dX2UKGgGR0Bj82BnSOR1aAdN6ANoCEdAkyYxLGrCFnV9lChoBkdAZC8m0E5hjWgHTegDaAhHQJMrgevIOpd1fZQoaAZHQGiIgi/wiJRoB03oA2gIR0CTLGR3eN1hdX2UKGgGR0Bg33dO6/ZeaAdN6ANoCEdAky+apT/ACXV9lChoBkdAcJSZZjhDPWgHTTcBaAhHQJM2WWhRIjJ1fZQoaAZHQGWJMA3kxRFoB03oA2gIR0CTQYpuMuOCdX2UKGgGR0BlejMotthvaAdN6ANoCEdAk0KQQHzH0nV9lChoBkdAZryq6OHWSWgHTegDaAhHQJNDV0knkT91fZQoaAZHQGeeSrxRVIZoB03oA2gIR0CTXRKK508vdX2UKGgGR0BmIREORT0haAdN6ANoCEdAk2aeFtbcGnV9lChoBkdAYwQXF98Z1mgHTegDaAhHQJNmowqRU3p1fZQoaAZHQGUbjh99c8loB03oA2gIR0CTa4zxwyZbdX2UKGgGR0BgV/XsgMc7aAdN6ANoCEdAk29h51Ng0HV9lChoBkdAWo9yjpLVWmgHTegDaAhHQJNyjysjmjl1fZQoaAZHQGKb6pxWDHxoB03oA2gIR0CTd5odMj/udX2UKGgGR0BgT0cMmWt2aAdN6ANoCEdAk3i4ZqEeyXV9lChoBkdAYq2Si/O+qWgHTegDaAhHQJN55KqXF991fZQoaAZHQG/zYigTRIBoB00uA2gIR0CTfkC3gDRudX2UKGgGR0BkJuixmkFfaAdN6ANoCEdAk3+XnZCfH3V9lChoBkdAZkd6Q/5ckmgHTegDaAhHQJOAe8IzFdd1fZQoaAZHQGSQmsV+I/JoB03oA2gIR0CTgygrYoRadX2UKGgGR0BwXt/mT1TSaAdNQgJoCEdAk4NcuBczInV9lChoBkdAQ/ib4Ju2qmgHS9BoCEdAk46/IXCTEHV9lChoBkdAbWCkUKzAvmgHTVcCaAhHQJOO7WkJrtV1fZQoaAZHQGI3oInjQzFoB03oA2gIR0CTkTO/cnE3dX2UKGgGR0BiwC26TW5IaAdN6ANoCEdAk5IZbQkX13V9lChoBkdAYEDWEK3NLWgHTegDaAhHQJOSwYixFAp1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
@@ -54,7 +54,7 @@
54
  "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
- ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
@@ -69,7 +69,7 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fbb48790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fbb48820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fbb488b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fbb48940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f32fbb489d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f32fbb48a60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32fbb48af0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fbb48b80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f32fbb48c10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fbb48ca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fbb48d30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fbb48dc0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f32fbb40940>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1710058658386329806,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZGJz7pfBM/YKQ9vvevpb6365Q9EHDZvQAAAAAAAAAAZihyPduQuT3q4bC9IS2MvowgbDw2XU69AAAAAAAAAACmh/Q9+wMTPx7UIr5G4aG+chwAvKHBE70AAAAAAAAAAJppL7zD+T66Xmmgupp0GrVzaYy7bnG8OQAAgD8AAIA/s6U8PsK2JT/yCIm+cUCxvl1TjT3mcPC9AAAAAAAAAAAaCH29y4/FPvY/oj0TfZ++3lKAvBFNjz0AAAAAAAAAAM2cATtxEeQ9xohePvy9fL6e1d89M2zvvQAAAAAAAAAA0z8LvjgPLz++fTQ+u2zTvsscgb3WQAo9AAAAAAAAAACD2Uy+OImjPklXgT6jKli+5QmEuZ/JzD0AAAAAAAAAAABkQ7zDESq65TxHM4FiPjCOZhW6osDFswAAgD8AAIA/AAB4urgu3rmds+K1QJfxsDS1ETsUEQY1AACAPwAAgD8Nlpa9AVSFP0xaIb4BF9S+e3bNvVENGzwAAAAAAAAAAGarxTwD1BE//eekvZBbub5YQDm8s2VivQAAAAAAAAAAGvmrPQ8aVz2j4wQ9GKeFvsnO4TxHsks9AAAAAAAAAABa4Fa+i2mBP7D3cb6yweK+Btdevsrjlj0AAAAAAAAAAE2Ng73X3Cy7lHCQO4Q9jTxzSrU85lpzvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGB1uBMBZKMAWyUTQgBjAF0lEdAlhooc3l0YHV9lChoBkdAbWutxuKoAGgHS/1oCEdAlhtw7DEWI3V9lChoBkdAbdXWpZOi4GgHTSUBaAhHQJYb/sVtXPt1fZQoaAZHQHHRcfzSThZoB00PAWgIR0CWHE5ggHNYdX2UKGgGR0BwlHFqBVdYaAdNIQFoCEdAlhys8kleGHV9lChoBkdAbj1fiPyTZGgHTYwBaAhHQJYc+vUz9CN1fZQoaAZHQHK830kGA09oB02gAWgIR0CWHc8Gs3hodX2UKGgGR0BxzRWyTpxFaAdNAAFoCEdAlh3gMH8jzXV9lChoBkdAcl7zOX3QD2gHTY8BaAhHQJYd6yJKraN1fZQoaAZHQHJQz+ee4CpoB00GAWgIR0CWH0v0yxiYdX2UKGgGR0BzCMHbAUL2aAdL+WgIR0CWH3WxhUiqdX2UKGgGR0ByN9VxS5y3aAdNDwFoCEdAliDbAHmig3V9lChoBkdAcBVxdIGyHGgHTS8BaAhHQJYg9r56+nJ1fZQoaAZHQHDoDT8YQ8RoB00SAWgIR0CWIVwAEMb4dX2UKGgGR0BvYRCv5gw5aAdNeAFoCEdAliNMWj4593V9lChoBkdAcOLr3j+72GgHS/hoCEdAliNWzfJmunV9lChoBkdAcDrzRQaaTmgHS/BoCEdAliPXOKO1fHV9lChoBkdAcGjJ2MbWE2gHTT4BaAhHQJYj6HYYixF1fZQoaAZHQHKy7M5fdARoB01yAWgIR0CWJCAqNIbwdX2UKGgGR0BwwfiuMdcTaAdNFwFoCEdAliSfK2a2F3V9lChoBkdAbYtSCvovBmgHTTMBaAhHQJYksQf6oEV1fZQoaAZHQG83A8bJfY1oB0v2aAhHQJYlMm7aqS51fZQoaAZHQG6byCe2/i5oB00vAWgIR0CWJclzEJjUdX2UKGgGR0Bx9NfzBhx6aAdNSgFoCEdAlidxf8dgfHV9lChoBkdAcupX1J17pmgHTRMBaAhHQJYnmltTDO11fZQoaAZHQHFZQbVBlc1oB013AWgIR0CWKNq//NqydX2UKGgGR0Bvpi5wwTM8aAdNVwFoCEdAlimsebNKRXV9lChoBkdAcO0fmLcbi2gHS/loCEdAlirfYao/A3V9lChoBkdAcRQoexOclWgHS/xoCEdAliuR37k4m3V9lChoBkdAbJ+ya/h2n2gHS/doCEdAlixyQYDT0HV9lChoBkdAcRpvK2a2F2gHTQ4BaAhHQJYsj30wrUd1fZQoaAZHQHDuAJgLJCBoB01lAWgIR0CWLKp/gBLgdX2UKGgGR0BwfNkH2RJVaAdNdwFoCEdAliy0/bCaZ3V9lChoBkdAcgECDVYp2GgHTXoBaAhHQJYs5D7ZWaN1fZQoaAZHQHMM8oDxLChoB00+AWgIR0CWLUG7BfrsdX2UKGgGR0BzIwYGdI5HaAdNHAFoCEdAli4hIe5nUXV9lChoBkdAbUJb3XZoPGgHTWABaAhHQJYupfmcOLB1fZQoaAZHQG9iAntv4udoB00rAWgIR0CWLzDTSb6QdX2UKGgGR0BxpadmQKa5aAdNAgFoCEdAli+q99MK1HV9lChoBkdAbD6y57PY4GgHTTQBaAhHQJYxTZcs1891fZQoaAZHQHLP/d/J/5NoB00PAWgIR0CWMhoOQQtjdX2UKGgGR0BxvWG34Kx+aAdNKQFoCEdAljIjWGyooHV9lChoBkdAbzWidJ8OTmgHTc0BaAhHQJYypB9kSVZ1fZQoaAZHQHKs8JhOP/9oB00BAWgIR0CWRweJpFkQdX2UKGgGR0BvEjPSlWOqaAdNEAFoCEdAlkdWCmMwUXV9lChoBkdAcRwxGlQ/HGgHTRoBaAhHQJZHi3/givB1fZQoaAZHQG4QYwh4dIZoB00GAWgIR0CWR6s2NvOydX2UKGgGR0BzE2ioKlYVaAdNTAFoCEdAlke8lkYoAnV9lChoBkdAcTR8FINEw2gHTScBaAhHQJZIBQhwEQp1fZQoaAZHQHIliTY/Vy5oB00CAWgIR0CWSHChvitJdX2UKGgGR0BxFc0xdpqRaAdNWwFoCEdAlkizvZyuIXV9lChoBkdAce5tx+8XemgHTQEBaAhHQJZI8bHZK4B1fZQoaAZHQHGVk65oXbdoB00MAWgIR0CWSbW8yvcKdX2UKGgGR0Bu0+tr9EThaAdNCQFoCEdAlkocny/bkHV9lChoBkdAby/bjcVQAWgHS/VoCEdAlkvWShakh3V9lChoBkdAbC6F2V3Ux2gHS/9oCEdAlkwcUAT7EnV9lChoBkdAcI+A7xNIsmgHTSwBaAhHQJZMriJfpll1fZQoaAZHQHL60H6dlNFoB005AWgIR0CWTn4QjD8+dX2UKGgGR0BuL7wKBun/aAdL/GgIR0CWTrWJ79hrdX2UKGgGR0ByMIV/MGHIaAdL3GgIR0CWTuDwpe/pdX2UKGgGR0ByfvFUADJVaAdL+GgIR0CWTuh99c8ldX2UKGgGR0BvE0gyM1jzaAdNGwJoCEdAlk78ox59mnV9lChoBkdAcdlwgkka/GgHTUQBaAhHQJZQpGI9C/p1fZQoaAZHQHOBm38XN1RoB00mAWgIR0CWUKrsSkCWdX2UKGgGR0Bwld8MNMGpaAdNFgFoCEdAllDxBqsU7HV9lChoBkdAcgGIYWLxZ2gHTUcBaAhHQJZRW6K+BYp1fZQoaAZHQHCEVyaNMoNoB00GAWgIR0CWUgbKzRhMdX2UKGgGR0BxDcMuvlltaAdNOAFoCEdAllIkhmoR7XV9lChoBkdAcNoJ8fFJhGgHTWoBaAhHQJZSM4EOiFl1fZQoaAZHQHEszm8ujAVoB00qAWgIR0CWUo6p5u63dX2UKGgGR0ByB2LuQZGbaAdL62gIR0CWUtqDK5kLdX2UKGgGR0BtcrqB3A2yaAdNAQFoCEdAllOPub7TD3V9lChoBkdAb+UVqveP72gHS+toCEdAllTxtUGVzXV9lChoBkdAcPKkxREWqWgHTSgBaAhHQJZVHlr/Khd1fZQoaAZHQHJ4761stTVoB0v1aAhHQJZViLuQZGd1fZQoaAZHQHHlqg/TsppoB00YAWgIR0CWVpnPmgandX2UKGgGR0BwUJKujh1laAdNKQFoCEdAllbfek56t3V9lChoBkdAbaO+zMRpUWgHTQkBaAhHQJZX2IznA7B1fZQoaAZHQHCYrGipNsZoB0vjaAhHQJZYWrU9ZA91fZQoaAZHQHGbAUcn3L5oB0voaAhHQJZYcx9G7SR1fZQoaAZHQHBGQm/nGKhoB00TAWgIR0CWWHqZtvXLdX2UKGgGR0BzJVCXyAhCaAdNHwFoCEdAlliUVafSQnV9lChoBkdAcGL6zVtoBmgHTWIBaAhHQJZYx0NjLB91fZQoaAZHQD2If9xZMcpoB0veaAhHQJZY+KekHlh1fZQoaAZHQHFwuk1uR9xoB00ZAWgIR0CWWZm03Ov/dX2UKGgGR0Bwlw12q1gIaAdNQwFoCEdAlloOQp4KQnV9lChoBkdAcueBHkLhJmgHS+9oCEdAllop8jRlYnV9lChoBkdAcbB3X7Lt/mgHS+ZoCEdAllvDYmLLp3V9lChoBkdAbxKUB4lhPWgHTX0BaAhHQJZcp/iHZbp1fZQoaAZHQHMbbiyY5T9oB00jAWgIR0CWXQmtQsPKdX2UKGgGR0ByxJLAYYR/aAdNKQFoCEdAll0OE7GNrHV9lChoBkdAcWTxTKkl/2gHTQoBaAhHQJZeH8Muvll1fZQoaAZHQHD+uk+HJtBoB00hAWgIR0CWXo3mV7hOdX2UKGgGR0Bw5ylP8AJcaAdL9WgIR0CWXuL5AQg+dX2UKGgGR0BuOyTt9hJAaAdL/GgIR0CWXzFPi1iOdX2UKGgGR0ByCNMsYl6aaAdNFgFoCEdAll9wxi5NGnV9lChoBkdAcHmEXcgyM2gHTQIBaAhHQJZfg+yJKrd1fZQoaAZHQHGB9QGfPHFoB00NAWgIR0CWX7OpsGgSdX2UKGgGR0BxcQ4OtnwoaAdL72gIR0CWYLkcS5AhdX2UKGgGR0BvTRCUornUaAdL/WgIR0CWYP3+dbxFdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
54
  "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
 
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:93bc36a860329cb0f7903063e79018ad2550dc54e98d6dec41868b4a029b0814
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:188f8af7f04957c07f53f54110c1a0d8af06b7ca3be54902bf4571a24dbf3c59
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68df2d0981fbfebc54a85c6a36fffb830d1b318e897625b0862a2cebaab532fb
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c41060dfdad0b264f9e0ac90df74e0aed7974ab543ad85e496e820f154aca846
3
  size 43762
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.1.0+cu118
5
  - GPU Enabled: True
6
- - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
  - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 256.7458603, "std_reward": 16.721394415672844, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-09T02:22:23.384302"}
 
1
+ {"mean_reward": 274.4435687, "std_reward": 22.70207228839237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-10T08:39:46.907174"}