Baseline
Browse files- README.md +4 -4
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +18 -18
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +3 -3
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **
|
25 |
-
This is a trained model of a **
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: ppo-mlp
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 274.44 +/- 22.70
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **ppo-mlp** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo-mlp** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x798192d3ad40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x798192d3add0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x798192d3ae60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x798192d3aef0>", "_build": "<function ActorCriticPolicy._build at 0x798192d3af80>", "forward": "<function ActorCriticPolicy.forward at 0x798192d3b010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x798192d3b0a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x798192d3b130>", "_predict": "<function ActorCriticPolicy._predict at 0x798192d3b1c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x798192d3b250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x798192d3b2e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x798192d3b370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x798192d3cd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702087206087709236, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpp/bqPplq67/KJO980JDhUSwM64hHwtwAAgD8AAIA/AJivvFzffbp+eew3MYT6MlHf6TqgLgq3AACAPwAAgD8zpvc8FECOuqo4zDkUZNg1pWncugaP0DQAAIA/AACAPzN4x7zhjI66rGymOX1hKLXvwC86W/vAuAAAgD8AAIA/JsCAPe5X8z6yaGm7mXNxvrTVlDwhNDC8AAAAAAAAAABm2Dq9KShJuuF6lLpT7MW1jjMhOktDrjkAAIA/AACAP5oFFj3DtRO4usGTuWb6WLR++aS45SKtOAAAgD8AAIA/M8wHvXtSn7pLqqo79gW0NJpCrbphCqQzAACAPwAAgD8aRCC9RD3aPiZlczzXDXq+lbGAvWBjnjsAAAAAAAAAADNzdjrDhWk5a1wuuOSqb7Panzk68NhVNwAAgD8AAIA/TQ9SPQXSEz5+viS+9o2IviAivr2W1za9AAAAAAAAAABNVvu9NIQUPqKkgz5qXoG+C5SGPSiWWz0AAAAAAAAAAGbInTyuJ4a42qaMu35eNjgQq7Q732UvOgAAgD8AAIA/5kjEPTgovD5W8vG9kq1mvnzLzTw4woy9AAAAAAAAAADmtTc9rk2Tuu1kirpNxEM2PATIOtIqoDkAAIA/AACAPzMr1rt77qW651g5Og1+KzWEziE6+/lUuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOaFhG6PKeMAWyUTegDjAF0lEdAkdU3V5KODXV9lChoBkdAXiLWjGkvb2gHTegDaAhHQJHXbT5O8Ch1fZQoaAZHQGIzJ2MbWEtoB03oA2gIR0CR2H7TDwYtdX2UKGgGR0BjrhmCiAUdaAdN6ANoCEdAkdrSOWBz3nV9lChoBkdAYoFMWXTmXGgHTegDaAhHQJHeZiWmgrZ1fZQoaAZHQGhgmiYb83xoB03oA2gIR0CR32JKaodddX2UKGgGR0BkiI7HQyAQaAdN6ANoCEdAkeJGSEDhcnV9lChoBkdAZMo8AaNuL2gHTegDaAhHQJHqHjS5RTF1fZQoaAZHQGYCI9LYf4hoB03oA2gIR0CR9JquKXOXdX2UKGgGR0BmM9Q2uPmxaAdN6ANoCEdAkfVM85jpcHV9lChoBkdAYuG9VWCEpWgHTegDaAhHQJH32GATZg51fZQoaAZHQGJko0ALiMpoB03oA2gIR0CSF02ZRbbDdX2UKGgGR0BlkdnM+u/2aAdN6ANoCEdAkhk8QyylenV9lChoBkdAYi9grH2h7GgHTegDaAhHQJIbzgBLf1p1fZQoaAZHQGHZGmce8wpoB03oA2gIR0CSH/GRV6u5dX2UKGgGR0BgSmXsw+MZaAdN6ANoCEdAkiSkhvBJqnV9lChoBkdAYgNakhzNlmgHTegDaAhHQJIuaUs4DLd1fZQoaAZHQF76f9xZMcpoB03oA2gIR0CSMPq1PWQPdX2UKGgGR0BkDBggHNX6aAdN6ANoCEdAkjIin1nM+3V9lChoBkdAS/ycNH6MzmgHTUABaAhHQJIzbt5UtI11fZQoaAZHQGPehW5paidoB03oA2gIR0CSNPVAAyVOdX2UKGgGR0BnpoRywOe8aAdN6ANoCEdAkjktlVcUunV9lChoBkdAYitjvuw5emgHTegDaAhHQJI6M30f5k91fZQoaAZHQGJZC2c8TzxoB03oA2gIR0CSPQ2+wkgPdX2UKGgGR0BinPZ5AyEdaAdN6ANoCEdAkkRU0aZQYXV9lChoBkdAX0qgYgq3E2gHTegDaAhHQJJLuDujRD11fZQoaAZHQGDUkqtozvZoB03oA2gIR0CSTCpiqhlEdX2UKGgGR0BmDoyCWeH0aAdN6ANoCEdAkk3v3N9piHV9lChoBkdAbfKsNlRP42gHTaMDaAhHQJJp8Dq4YrJ1fZQoaAZHv/n0TURWcSZoB00WAWgIR0CScFVcUucudX2UKGgGR0BnIHGjsUqQaAdN6ANoCEdAknK3wsoUjHV9lChoBkdAZwwNOuaF22gHTegDaAhHQJJ2UI+nqFB1fZQoaAZHQGDa7F85S3toB03oA2gIR0CSeXK4x1xLdX2UKGgGR0BmXig9Net0aAdN6ANoCEdAkoBO6iCaqnV9lChoBkdAZRX6KtPpIWgHTegDaAhHQJKCryf+S8t1fZQoaAZHQFvgnIyTINpoB03oA2gIR0CSg88dgfEGdX2UKGgGR0BhJxvUBnzyaAdN6ANoCEdAkoT3Vsk6cXV9lChoBkdAZFtV/+bVjWgHTegDaAhHQJKGYaMrEtN1fZQoaAZHQGPXjMFEAo5oB03oA2gIR0CSimRq46OpdX2UKGgGR0BnVr9qDbrUaAdN6ANoCEdAkottoBaLXXV9lChoBkdAXhrGgi/wiWgHTegDaAhHQJKPf/GVAzJ1fZQoaAZHQEgptu1ndwhoB00JAWgIR0CSkcXxOLzgdX2UKGgGR0Bi9VCJGe+VaAdN6ANoCEdAkpkmCAc1fnV9lChoBkdAZLW4gA6uGWgHTegDaAhHQJKhdQ0oBq91fZQoaAZHQFy8schkiEBoB03oA2gIR0CSo3+Y+jdpdX2UKGgGR0Blft36hxo7aAdN6ANoCEdAkr2/Zh8YynV9lChoBkdAYM1S8an752gHTegDaAhHQJLFTs/pt791fZQoaAZHQF+E+fywwCdoB03oA2gIR0CSyI88cMmXdX2UKGgGR0BhyY+EAYHgaAdN6ANoCEdAks12bTc7AHV9lChoBkdAYBc8QI2OyWgHTegDaAhHQJLRT1vl2eR1fZQoaAZHwAfmtZFG5MFoB00CAWgIR0CS2MEPUaybdX2UKGgGR0BoXBMxoIv8aAdN6ANoCEdAktpO09hZyXV9lChoBkdAYwqVt4zJp2gHTegDaAhHQJLbZkiD/VB1fZQoaAZHQGH8vpY9xIdoB03oA2gIR0CS3JqcEvCedX2UKGgGR0Bk7TW07bL2aAdN6ANoCEdAkt3y1Z1V53V9lChoBkdAZ2o5LAYYSGgHTegDaAhHQJLhd9d/rjZ1fZQoaAZHQGae0vf0mMRoB03oA2gIR0CS4nGSZBszdX2UKGgGR0BjL7ZOBUaRaAdN6ANoCEdAkuVDRQaaTnV9lChoBkdAYRmExIre7GgHTegDaAhHQJLm1sKsuFp1fZQoaAZHQGSIiDmKZUloB03oA2gIR0CS66ka/ATJdX2UKGgGR0Bkxj4Ju2qlaAdN6ANoCEdAkvLy+Yc/+3V9lChoBkdAb8GecQRPGmgHTaoBaAhHQJLz8Bnzxw11fZQoaAZHQGG3/CAMDwJoB03oA2gIR0CS9KvNu+AVdX2UKGgGR0Bw6qYfGMn7aAdN+wFoCEdAkvZUaZQYUHV9lChoBkdAZtkjxCpm3GgHTegDaAhHQJMPZ0GNaQp1fZQoaAZHQGCCeJYT0xxoB03oA2gIR0CTF13hXKbKdX2UKGgGR0BBJaqCHymRaAdL9mgIR0CTF199+gDidX2UKGgGR0Bi2CVSn+AFaAdN6ANoCEdAkxsvAoG6gHV9lChoBkdAZAbnPmganGgHTegDaAhHQJMd75M10kp1fZQoaAZHQHBryvgWJrNoB01AAmgIR0CTIBB3Roh7dX2UKGgGR0BtrFNet0V8aAdNkQNoCEdAkyQeDzyz5XV9lChoBkdAZcGa99MK1GgHTegDaAhHQJMkOLZSNwR1fZQoaAZHQHEVsMNMGotoB03/AmgIR0CTJR8Zk079dX2UKGgGR0Bj82BnSOR1aAdN6ANoCEdAkyYxLGrCFnV9lChoBkdAZC8m0E5hjWgHTegDaAhHQJMrgevIOpd1fZQoaAZHQGiIgi/wiJRoB03oA2gIR0CTLGR3eN1hdX2UKGgGR0Bg33dO6/ZeaAdN6ANoCEdAky+apT/ACXV9lChoBkdAcJSZZjhDPWgHTTcBaAhHQJM2WWhRIjJ1fZQoaAZHQGWJMA3kxRFoB03oA2gIR0CTQYpuMuOCdX2UKGgGR0BlejMotthvaAdN6ANoCEdAk0KQQHzH0nV9lChoBkdAZryq6OHWSWgHTegDaAhHQJNDV0knkT91fZQoaAZHQGeeSrxRVIZoB03oA2gIR0CTXRKK508vdX2UKGgGR0BmIREORT0haAdN6ANoCEdAk2aeFtbcGnV9lChoBkdAYwQXF98Z1mgHTegDaAhHQJNmowqRU3p1fZQoaAZHQGUbjh99c8loB03oA2gIR0CTa4zxwyZbdX2UKGgGR0BgV/XsgMc7aAdN6ANoCEdAk29h51Ng0HV9lChoBkdAWo9yjpLVWmgHTegDaAhHQJNyjysjmjl1fZQoaAZHQGKb6pxWDHxoB03oA2gIR0CTd5odMj/udX2UKGgGR0BgT0cMmWt2aAdN6ANoCEdAk3i4ZqEeyXV9lChoBkdAYq2Si/O+qWgHTegDaAhHQJN55KqXF991fZQoaAZHQG/zYigTRIBoB00uA2gIR0CTfkC3gDRudX2UKGgGR0BkJuixmkFfaAdN6ANoCEdAk3+XnZCfH3V9lChoBkdAZkd6Q/5ckmgHTegDaAhHQJOAe8IzFdd1fZQoaAZHQGSQmsV+I/JoB03oA2gIR0CTgygrYoRadX2UKGgGR0BwXt/mT1TSaAdNQgJoCEdAk4NcuBczInV9lChoBkdAQ/ib4Ju2qmgHS9BoCEdAk46/IXCTEHV9lChoBkdAbWCkUKzAvmgHTVcCaAhHQJOO7WkJrtV1fZQoaAZHQGI3oInjQzFoB03oA2gIR0CTkTO/cnE3dX2UKGgGR0BiwC26TW5IaAdN6ANoCEdAk5IZbQkX13V9lChoBkdAYEDWEK3NLWgHTegDaAhHQJOSwYixFAp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fbb48790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fbb48820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fbb488b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fbb48940>", "_build": "<function ActorCriticPolicy._build at 0x7f32fbb489d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f32fbb48a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32fbb48af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fbb48b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32fbb48c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fbb48ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fbb48d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fbb48dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f32fbb40940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710058658386329806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZGJz7pfBM/YKQ9vvevpb6365Q9EHDZvQAAAAAAAAAAZihyPduQuT3q4bC9IS2MvowgbDw2XU69AAAAAAAAAACmh/Q9+wMTPx7UIr5G4aG+chwAvKHBE70AAAAAAAAAAJppL7zD+T66Xmmgupp0GrVzaYy7bnG8OQAAgD8AAIA/s6U8PsK2JT/yCIm+cUCxvl1TjT3mcPC9AAAAAAAAAAAaCH29y4/FPvY/oj0TfZ++3lKAvBFNjz0AAAAAAAAAAM2cATtxEeQ9xohePvy9fL6e1d89M2zvvQAAAAAAAAAA0z8LvjgPLz++fTQ+u2zTvsscgb3WQAo9AAAAAAAAAACD2Uy+OImjPklXgT6jKli+5QmEuZ/JzD0AAAAAAAAAAABkQ7zDESq65TxHM4FiPjCOZhW6osDFswAAgD8AAIA/AAB4urgu3rmds+K1QJfxsDS1ETsUEQY1AACAPwAAgD8Nlpa9AVSFP0xaIb4BF9S+e3bNvVENGzwAAAAAAAAAAGarxTwD1BE//eekvZBbub5YQDm8s2VivQAAAAAAAAAAGvmrPQ8aVz2j4wQ9GKeFvsnO4TxHsks9AAAAAAAAAABa4Fa+i2mBP7D3cb6yweK+Btdevsrjlj0AAAAAAAAAAE2Ng73X3Cy7lHCQO4Q9jTxzSrU85lpzvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGB1uBMBZKMAWyUTQgBjAF0lEdAlhooc3l0YHV9lChoBkdAbWutxuKoAGgHS/1oCEdAlhtw7DEWI3V9lChoBkdAbdXWpZOi4GgHTSUBaAhHQJYb/sVtXPt1fZQoaAZHQHHRcfzSThZoB00PAWgIR0CWHE5ggHNYdX2UKGgGR0BwlHFqBVdYaAdNIQFoCEdAlhys8kleGHV9lChoBkdAbj1fiPyTZGgHTYwBaAhHQJYc+vUz9CN1fZQoaAZHQHK830kGA09oB02gAWgIR0CWHc8Gs3hodX2UKGgGR0BxzRWyTpxFaAdNAAFoCEdAlh3gMH8jzXV9lChoBkdAcl7zOX3QD2gHTY8BaAhHQJYd6yJKraN1fZQoaAZHQHJQz+ee4CpoB00GAWgIR0CWH0v0yxiYdX2UKGgGR0BzCMHbAUL2aAdL+WgIR0CWH3WxhUiqdX2UKGgGR0ByN9VxS5y3aAdNDwFoCEdAliDbAHmig3V9lChoBkdAcBVxdIGyHGgHTS8BaAhHQJYg9r56+nJ1fZQoaAZHQHDoDT8YQ8RoB00SAWgIR0CWIVwAEMb4dX2UKGgGR0BvYRCv5gw5aAdNeAFoCEdAliNMWj4593V9lChoBkdAcOLr3j+72GgHS/hoCEdAliNWzfJmunV9lChoBkdAcDrzRQaaTmgHS/BoCEdAliPXOKO1fHV9lChoBkdAcGjJ2MbWE2gHTT4BaAhHQJYj6HYYixF1fZQoaAZHQHKy7M5fdARoB01yAWgIR0CWJCAqNIbwdX2UKGgGR0BwwfiuMdcTaAdNFwFoCEdAliSfK2a2F3V9lChoBkdAbYtSCvovBmgHTTMBaAhHQJYksQf6oEV1fZQoaAZHQG83A8bJfY1oB0v2aAhHQJYlMm7aqS51fZQoaAZHQG6byCe2/i5oB00vAWgIR0CWJclzEJjUdX2UKGgGR0Bx9NfzBhx6aAdNSgFoCEdAlidxf8dgfHV9lChoBkdAcupX1J17pmgHTRMBaAhHQJYnmltTDO11fZQoaAZHQHFZQbVBlc1oB013AWgIR0CWKNq//NqydX2UKGgGR0Bvpi5wwTM8aAdNVwFoCEdAlimsebNKRXV9lChoBkdAcO0fmLcbi2gHS/loCEdAlirfYao/A3V9lChoBkdAcRQoexOclWgHS/xoCEdAliuR37k4m3V9lChoBkdAbJ+ya/h2n2gHS/doCEdAlixyQYDT0HV9lChoBkdAcRpvK2a2F2gHTQ4BaAhHQJYsj30wrUd1fZQoaAZHQHDuAJgLJCBoB01lAWgIR0CWLKp/gBLgdX2UKGgGR0BwfNkH2RJVaAdNdwFoCEdAliy0/bCaZ3V9lChoBkdAcgECDVYp2GgHTXoBaAhHQJYs5D7ZWaN1fZQoaAZHQHMM8oDxLChoB00+AWgIR0CWLUG7BfrsdX2UKGgGR0BzIwYGdI5HaAdNHAFoCEdAli4hIe5nUXV9lChoBkdAbUJb3XZoPGgHTWABaAhHQJYupfmcOLB1fZQoaAZHQG9iAntv4udoB00rAWgIR0CWLzDTSb6QdX2UKGgGR0BxpadmQKa5aAdNAgFoCEdAli+q99MK1HV9lChoBkdAbD6y57PY4GgHTTQBaAhHQJYxTZcs1891fZQoaAZHQHLP/d/J/5NoB00PAWgIR0CWMhoOQQtjdX2UKGgGR0BxvWG34Kx+aAdNKQFoCEdAljIjWGyooHV9lChoBkdAbzWidJ8OTmgHTc0BaAhHQJYypB9kSVZ1fZQoaAZHQHKs8JhOP/9oB00BAWgIR0CWRweJpFkQdX2UKGgGR0BvEjPSlWOqaAdNEAFoCEdAlkdWCmMwUXV9lChoBkdAcRwxGlQ/HGgHTRoBaAhHQJZHi3/givB1fZQoaAZHQG4QYwh4dIZoB00GAWgIR0CWR6s2NvOydX2UKGgGR0BzE2ioKlYVaAdNTAFoCEdAlke8lkYoAnV9lChoBkdAcTR8FINEw2gHTScBaAhHQJZIBQhwEQp1fZQoaAZHQHIliTY/Vy5oB00CAWgIR0CWSHChvitJdX2UKGgGR0BxFc0xdpqRaAdNWwFoCEdAlkizvZyuIXV9lChoBkdAce5tx+8XemgHTQEBaAhHQJZI8bHZK4B1fZQoaAZHQHGVk65oXbdoB00MAWgIR0CWSbW8yvcKdX2UKGgGR0Bu0+tr9EThaAdNCQFoCEdAlkocny/bkHV9lChoBkdAby/bjcVQAWgHS/VoCEdAlkvWShakh3V9lChoBkdAbC6F2V3Ux2gHS/9oCEdAlkwcUAT7EnV9lChoBkdAcI+A7xNIsmgHTSwBaAhHQJZMriJfpll1fZQoaAZHQHL60H6dlNFoB005AWgIR0CWTn4QjD8+dX2UKGgGR0BuL7wKBun/aAdL/GgIR0CWTrWJ79hrdX2UKGgGR0ByMIV/MGHIaAdL3GgIR0CWTuDwpe/pdX2UKGgGR0ByfvFUADJVaAdL+GgIR0CWTuh99c8ldX2UKGgGR0BvE0gyM1jzaAdNGwJoCEdAlk78ox59mnV9lChoBkdAcdlwgkka/GgHTUQBaAhHQJZQpGI9C/p1fZQoaAZHQHOBm38XN1RoB00mAWgIR0CWUKrsSkCWdX2UKGgGR0Bwld8MNMGpaAdNFgFoCEdAllDxBqsU7HV9lChoBkdAcgGIYWLxZ2gHTUcBaAhHQJZRW6K+BYp1fZQoaAZHQHCEVyaNMoNoB00GAWgIR0CWUgbKzRhMdX2UKGgGR0BxDcMuvlltaAdNOAFoCEdAllIkhmoR7XV9lChoBkdAcNoJ8fFJhGgHTWoBaAhHQJZSM4EOiFl1fZQoaAZHQHEszm8ujAVoB00qAWgIR0CWUo6p5u63dX2UKGgGR0ByB2LuQZGbaAdL62gIR0CWUtqDK5kLdX2UKGgGR0BtcrqB3A2yaAdNAQFoCEdAllOPub7TD3V9lChoBkdAb+UVqveP72gHS+toCEdAllTxtUGVzXV9lChoBkdAcPKkxREWqWgHTSgBaAhHQJZVHlr/Khd1fZQoaAZHQHJ4761stTVoB0v1aAhHQJZViLuQZGd1fZQoaAZHQHHlqg/TsppoB00YAWgIR0CWVpnPmgandX2UKGgGR0BwUJKujh1laAdNKQFoCEdAllbfek56t3V9lChoBkdAbaO+zMRpUWgHTQkBaAhHQJZX2IznA7B1fZQoaAZHQHCYrGipNsZoB0vjaAhHQJZYWrU9ZA91fZQoaAZHQHGbAUcn3L5oB0voaAhHQJZYcx9G7SR1fZQoaAZHQHBGQm/nGKhoB00TAWgIR0CWWHqZtvXLdX2UKGgGR0BzJVCXyAhCaAdNHwFoCEdAlliUVafSQnV9lChoBkdAcGL6zVtoBmgHTWIBaAhHQJZYx0NjLB91fZQoaAZHQD2If9xZMcpoB0veaAhHQJZY+KekHlh1fZQoaAZHQHFwuk1uR9xoB00ZAWgIR0CWWZm03Ov/dX2UKGgGR0Bwlw12q1gIaAdNQwFoCEdAlloOQp4KQnV9lChoBkdAcueBHkLhJmgHS+9oCEdAllop8jRlYnV9lChoBkdAcbB3X7Lt/mgHS+ZoCEdAllvDYmLLp3V9lChoBkdAbxKUB4lhPWgHTX0BaAhHQJZcp/iHZbp1fZQoaAZHQHMbbiyY5T9oB00jAWgIR0CWXQmtQsPKdX2UKGgGR0ByxJLAYYR/aAdNKQFoCEdAll0OE7GNrHV9lChoBkdAcWTxTKkl/2gHTQoBaAhHQJZeH8Muvll1fZQoaAZHQHD+uk+HJtBoB00hAWgIR0CWXo3mV7hOdX2UKGgGR0Bw5ylP8AJcaAdL9WgIR0CWXuL5AQg+dX2UKGgGR0BuOyTt9hJAaAdL/GgIR0CWXzFPi1iOdX2UKGgGR0ByCNMsYl6aaAdNFgFoCEdAll9wxi5NGnV9lChoBkdAcHmEXcgyM2gHTQIBaAhHQJZfg+yJKrd1fZQoaAZHQHGB9QGfPHFoB00NAWgIR0CWX7OpsGgSdX2UKGgGR0BxcQ4OtnwoaAdL72gIR0CWYLkcS5AhdX2UKGgGR0BvTRCUornUaAdL/WgIR0CWYP3+dbxFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a02a74247a628bf1a50add00a09f09ba6ef8e88ae1ae692fa8fc212d602b7233
|
3 |
+
size 148052
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -54,7 +54,7 @@
|
|
54 |
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +69,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fbb48790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fbb48820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fbb488b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fbb48940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f32fbb489d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f32fbb48a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32fbb48af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fbb48b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f32fbb48c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fbb48ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fbb48d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fbb48dc0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f32fbb40940>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1710058658386329806,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZGJz7pfBM/YKQ9vvevpb6365Q9EHDZvQAAAAAAAAAAZihyPduQuT3q4bC9IS2MvowgbDw2XU69AAAAAAAAAACmh/Q9+wMTPx7UIr5G4aG+chwAvKHBE70AAAAAAAAAAJppL7zD+T66Xmmgupp0GrVzaYy7bnG8OQAAgD8AAIA/s6U8PsK2JT/yCIm+cUCxvl1TjT3mcPC9AAAAAAAAAAAaCH29y4/FPvY/oj0TfZ++3lKAvBFNjz0AAAAAAAAAAM2cATtxEeQ9xohePvy9fL6e1d89M2zvvQAAAAAAAAAA0z8LvjgPLz++fTQ+u2zTvsscgb3WQAo9AAAAAAAAAACD2Uy+OImjPklXgT6jKli+5QmEuZ/JzD0AAAAAAAAAAABkQ7zDESq65TxHM4FiPjCOZhW6osDFswAAgD8AAIA/AAB4urgu3rmds+K1QJfxsDS1ETsUEQY1AACAPwAAgD8Nlpa9AVSFP0xaIb4BF9S+e3bNvVENGzwAAAAAAAAAAGarxTwD1BE//eekvZBbub5YQDm8s2VivQAAAAAAAAAAGvmrPQ8aVz2j4wQ9GKeFvsnO4TxHsks9AAAAAAAAAABa4Fa+i2mBP7D3cb6yweK+Btdevsrjlj0AAAAAAAAAAE2Ng73X3Cy7lHCQO4Q9jTxzSrU85lpzvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGB1uBMBZKMAWyUTQgBjAF0lEdAlhooc3l0YHV9lChoBkdAbWutxuKoAGgHS/1oCEdAlhtw7DEWI3V9lChoBkdAbdXWpZOi4GgHTSUBaAhHQJYb/sVtXPt1fZQoaAZHQHHRcfzSThZoB00PAWgIR0CWHE5ggHNYdX2UKGgGR0BwlHFqBVdYaAdNIQFoCEdAlhys8kleGHV9lChoBkdAbj1fiPyTZGgHTYwBaAhHQJYc+vUz9CN1fZQoaAZHQHK830kGA09oB02gAWgIR0CWHc8Gs3hodX2UKGgGR0BxzRWyTpxFaAdNAAFoCEdAlh3gMH8jzXV9lChoBkdAcl7zOX3QD2gHTY8BaAhHQJYd6yJKraN1fZQoaAZHQHJQz+ee4CpoB00GAWgIR0CWH0v0yxiYdX2UKGgGR0BzCMHbAUL2aAdL+WgIR0CWH3WxhUiqdX2UKGgGR0ByN9VxS5y3aAdNDwFoCEdAliDbAHmig3V9lChoBkdAcBVxdIGyHGgHTS8BaAhHQJYg9r56+nJ1fZQoaAZHQHDoDT8YQ8RoB00SAWgIR0CWIVwAEMb4dX2UKGgGR0BvYRCv5gw5aAdNeAFoCEdAliNMWj4593V9lChoBkdAcOLr3j+72GgHS/hoCEdAliNWzfJmunV9lChoBkdAcDrzRQaaTmgHS/BoCEdAliPXOKO1fHV9lChoBkdAcGjJ2MbWE2gHTT4BaAhHQJYj6HYYixF1fZQoaAZHQHKy7M5fdARoB01yAWgIR0CWJCAqNIbwdX2UKGgGR0BwwfiuMdcTaAdNFwFoCEdAliSfK2a2F3V9lChoBkdAbYtSCvovBmgHTTMBaAhHQJYksQf6oEV1fZQoaAZHQG83A8bJfY1oB0v2aAhHQJYlMm7aqS51fZQoaAZHQG6byCe2/i5oB00vAWgIR0CWJclzEJjUdX2UKGgGR0Bx9NfzBhx6aAdNSgFoCEdAlidxf8dgfHV9lChoBkdAcupX1J17pmgHTRMBaAhHQJYnmltTDO11fZQoaAZHQHFZQbVBlc1oB013AWgIR0CWKNq//NqydX2UKGgGR0Bvpi5wwTM8aAdNVwFoCEdAlimsebNKRXV9lChoBkdAcO0fmLcbi2gHS/loCEdAlirfYao/A3V9lChoBkdAcRQoexOclWgHS/xoCEdAliuR37k4m3V9lChoBkdAbJ+ya/h2n2gHS/doCEdAlixyQYDT0HV9lChoBkdAcRpvK2a2F2gHTQ4BaAhHQJYsj30wrUd1fZQoaAZHQHDuAJgLJCBoB01lAWgIR0CWLKp/gBLgdX2UKGgGR0BwfNkH2RJVaAdNdwFoCEdAliy0/bCaZ3V9lChoBkdAcgECDVYp2GgHTXoBaAhHQJYs5D7ZWaN1fZQoaAZHQHMM8oDxLChoB00+AWgIR0CWLUG7BfrsdX2UKGgGR0BzIwYGdI5HaAdNHAFoCEdAli4hIe5nUXV9lChoBkdAbUJb3XZoPGgHTWABaAhHQJYupfmcOLB1fZQoaAZHQG9iAntv4udoB00rAWgIR0CWLzDTSb6QdX2UKGgGR0BxpadmQKa5aAdNAgFoCEdAli+q99MK1HV9lChoBkdAbD6y57PY4GgHTTQBaAhHQJYxTZcs1891fZQoaAZHQHLP/d/J/5NoB00PAWgIR0CWMhoOQQtjdX2UKGgGR0BxvWG34Kx+aAdNKQFoCEdAljIjWGyooHV9lChoBkdAbzWidJ8OTmgHTc0BaAhHQJYypB9kSVZ1fZQoaAZHQHKs8JhOP/9oB00BAWgIR0CWRweJpFkQdX2UKGgGR0BvEjPSlWOqaAdNEAFoCEdAlkdWCmMwUXV9lChoBkdAcRwxGlQ/HGgHTRoBaAhHQJZHi3/givB1fZQoaAZHQG4QYwh4dIZoB00GAWgIR0CWR6s2NvOydX2UKGgGR0BzE2ioKlYVaAdNTAFoCEdAlke8lkYoAnV9lChoBkdAcTR8FINEw2gHTScBaAhHQJZIBQhwEQp1fZQoaAZHQHIliTY/Vy5oB00CAWgIR0CWSHChvitJdX2UKGgGR0BxFc0xdpqRaAdNWwFoCEdAlkizvZyuIXV9lChoBkdAce5tx+8XemgHTQEBaAhHQJZI8bHZK4B1fZQoaAZHQHGVk65oXbdoB00MAWgIR0CWSbW8yvcKdX2UKGgGR0Bu0+tr9EThaAdNCQFoCEdAlkocny/bkHV9lChoBkdAby/bjcVQAWgHS/VoCEdAlkvWShakh3V9lChoBkdAbC6F2V3Ux2gHS/9oCEdAlkwcUAT7EnV9lChoBkdAcI+A7xNIsmgHTSwBaAhHQJZMriJfpll1fZQoaAZHQHL60H6dlNFoB005AWgIR0CWTn4QjD8+dX2UKGgGR0BuL7wKBun/aAdL/GgIR0CWTrWJ79hrdX2UKGgGR0ByMIV/MGHIaAdL3GgIR0CWTuDwpe/pdX2UKGgGR0ByfvFUADJVaAdL+GgIR0CWTuh99c8ldX2UKGgGR0BvE0gyM1jzaAdNGwJoCEdAlk78ox59mnV9lChoBkdAcdlwgkka/GgHTUQBaAhHQJZQpGI9C/p1fZQoaAZHQHOBm38XN1RoB00mAWgIR0CWUKrsSkCWdX2UKGgGR0Bwld8MNMGpaAdNFgFoCEdAllDxBqsU7HV9lChoBkdAcgGIYWLxZ2gHTUcBaAhHQJZRW6K+BYp1fZQoaAZHQHCEVyaNMoNoB00GAWgIR0CWUgbKzRhMdX2UKGgGR0BxDcMuvlltaAdNOAFoCEdAllIkhmoR7XV9lChoBkdAcNoJ8fFJhGgHTWoBaAhHQJZSM4EOiFl1fZQoaAZHQHEszm8ujAVoB00qAWgIR0CWUo6p5u63dX2UKGgGR0ByB2LuQZGbaAdL62gIR0CWUtqDK5kLdX2UKGgGR0BtcrqB3A2yaAdNAQFoCEdAllOPub7TD3V9lChoBkdAb+UVqveP72gHS+toCEdAllTxtUGVzXV9lChoBkdAcPKkxREWqWgHTSgBaAhHQJZVHlr/Khd1fZQoaAZHQHJ4761stTVoB0v1aAhHQJZViLuQZGd1fZQoaAZHQHHlqg/TsppoB00YAWgIR0CWVpnPmgandX2UKGgGR0BwUJKujh1laAdNKQFoCEdAllbfek56t3V9lChoBkdAbaO+zMRpUWgHTQkBaAhHQJZX2IznA7B1fZQoaAZHQHCYrGipNsZoB0vjaAhHQJZYWrU9ZA91fZQoaAZHQHGbAUcn3L5oB0voaAhHQJZYcx9G7SR1fZQoaAZHQHBGQm/nGKhoB00TAWgIR0CWWHqZtvXLdX2UKGgGR0BzJVCXyAhCaAdNHwFoCEdAlliUVafSQnV9lChoBkdAcGL6zVtoBmgHTWIBaAhHQJZYx0NjLB91fZQoaAZHQD2If9xZMcpoB0veaAhHQJZY+KekHlh1fZQoaAZHQHFwuk1uR9xoB00ZAWgIR0CWWZm03Ov/dX2UKGgGR0Bwlw12q1gIaAdNQwFoCEdAlloOQp4KQnV9lChoBkdAcueBHkLhJmgHS+9oCEdAllop8jRlYnV9lChoBkdAcbB3X7Lt/mgHS+ZoCEdAllvDYmLLp3V9lChoBkdAbxKUB4lhPWgHTX0BaAhHQJZcp/iHZbp1fZQoaAZHQHMbbiyY5T9oB00jAWgIR0CWXQmtQsPKdX2UKGgGR0ByxJLAYYR/aAdNKQFoCEdAll0OE7GNrHV9lChoBkdAcWTxTKkl/2gHTQoBaAhHQJZeH8Muvll1fZQoaAZHQHD+uk+HJtBoB00hAWgIR0CWXo3mV7hOdX2UKGgGR0Bw5ylP8AJcaAdL9WgIR0CWXuL5AQg+dX2UKGgGR0BuOyTt9hJAaAdL/GgIR0CWXzFPi1iOdX2UKGgGR0ByCNMsYl6aaAdNFgFoCEdAll9wxi5NGnV9lChoBkdAcHmEXcgyM2gHTQIBaAhHQJZfg+yJKrd1fZQoaAZHQHGB9QGfPHFoB00NAWgIR0CWX7OpsGgSdX2UKGgGR0BxcQ4OtnwoaAdL72gIR0CWYLkcS5AhdX2UKGgGR0BvTRCUornUaAdL/WgIR0CWYP3+dbxFdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
54 |
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:188f8af7f04957c07f53f54110c1a0d8af06b7ca3be54902bf4571a24dbf3c59
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c41060dfdad0b264f9e0ac90df74e0aed7974ab543ad85e496e820f154aca846
|
3 |
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS: Linux-
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.1.0+
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 274.4435687, "std_reward": 22.70207228839237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-10T08:39:46.907174"}
|