realslimman commited on
Commit
32d10db
1 Parent(s): 4ca8ef7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -0
README.md CHANGED
@@ -1,3 +1,159 @@
1
  ---
2
  license: apache-2.0
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ pipeline_tag: image-segmentation
4
+ tags:
5
+ - medical
6
  ---
7
+
8
+ <h1 align="center">● Medical SAM Adapter</h1>
9
+
10
+ <p align="center">
11
+ <a href="https://discord.gg/hXmQRUHvYc">
12
+ <img alt="Discord" src="https://img.shields.io/discord/1146610656779440188?logo=discord&style=flat&logoColor=white"/></a>
13
+ <img src="https://img.shields.io/static/v1?label=license&message=GPL&color=white&style=flat" alt="License"/>
14
+ </p>
15
+
16
+ Medical SAM Adapter, or say MSA, is a project to fineturn [SAM](https://github.com/facebookresearch/segment-anything) using [Adaption](https://lightning.ai/pages/community/tutorial/lora-llm/) for the Medical Imaging.
17
+ This method is elaborated in the paper [Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation](https://arxiv.org/abs/2304.12620).
18
+
19
+ ## A Quick Overview
20
+ <img width="880" height="380" src="https://github.com/WuJunde/Medical-SAM-Adapter/blob/main/figs/medsamadpt.jpeg">
21
+
22
+ ## News
23
+ - [TOP] Join in our [Discord](https://discord.gg/EqbgSPEX) to ask questions and discuss with others.
24
+ - 23-05-10. This project is still quickly updating 🌝. Check TODO list to see what will be released next.
25
+ - 23-05-11. GitHub Dicussion opened. You guys can now talk, code and make friends on the playground 👨‍❤️‍👨.
26
+ - 23-12-22. Released data loader and example case on [REFUGE](https://refuge.grand-challenge.org/) dataset. Credit: @jiayuanz3
27
+ - 24-01-04. Released the Efficient Med-SAM-Adapter❗️ A new, faster, and more lightweight version incorporates Meta [EfficientSAM](https://yformer.github.io/efficient-sam/)🏇. Full credit goes to @shinning0821.
28
+ - 24-01-07. The image resolution now can be resized by ``-image_size``. Credit: @shinning0821
29
+ - 24-01-11. Added a detailed guide on utilizing the Efficient Med-SAM-Adapter, complete with a comparison of performance and speed. You can find this resource in [guidance/efficient_sam.ipynb](./guidance/efficient_sam.ipynb). Credit: @shinning0821
30
+ - 24-01-14. We've just launched our first official version, v0.1.0-alpha 🥳. This release includes support for [MobileSAM](https://github.com/ChaoningZhang/MobileSAM), which can be activated by setting ``-net mobile_sam``. Additionally, you now have the flexibility to use ViT, Tiny ViT, and Efficient ViT as encoders. Check the details [here](https://github.com/KidsWithTokens/Medical-SAM-Adapter/releases/tag/v0.1.0-alpha). Credit: @shinning0821
31
+
32
+ ## Requirement
33
+
34
+ Install the environment:
35
+
36
+ ``conda env create -f environment.yml``
37
+
38
+ ``conda activate sam_adapt``
39
+
40
+ Then download [SAM checkpoint](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth), and put it at ./checkpoint/sam/
41
+
42
+ You can run:
43
+
44
+ ``wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth``
45
+
46
+ ``mv sam_vit_b_01ec64.pth ./checkpoint/sam``
47
+ creat the folder if it does not exist
48
+
49
+ ## Example Cases
50
+
51
+ ### Melanoma Segmentation from Skin Images (2D)
52
+
53
+ 1. Download ISIC dataset part 1 from https://challenge.isic-archive.com/data/. Then put the csv files in "./data/isic" under your data path. Your dataset folder under "your_data_path" should be like:
54
+ ISIC/
55
+ ISBI2016_ISIC_Part1_Test_Data/...
56
+
57
+ ISBI2016_ISIC_Part1_Training_Data/...
58
+
59
+ ISBI2016_ISIC_Part1_Test_GroundTruth.csv
60
+
61
+ ISBI2016_ISIC_Part1_Training_GroundTruth.csv
62
+
63
+ 2. Begin Adapting! run: ``python train.py -net sam -mod sam_adpt -exp_name *msa_test_isic* -sam_ckpt ./checkpoint/sam/sam_vit_b_01ec64.pth -image_size 1024 -b 32 -dataset isic -data_path *../data*``
64
+ change "data_path" and "exp_name" for your own useage. you can change "exp_name" to anything you want.
65
+
66
+ You can descrease the ``image size`` or batch size ``b`` if out of memory.
67
+
68
+ 3. Evaluation: The code can automatically evaluate the model on the test set during traing, set "--val_freq" to control how many epoches you want to evaluate once. You can also run val.py for the independent evaluation.
69
+
70
+ 4. Result Visualization: You can set "--vis" parameter to control how many epoches you want to see the results in the training or evaluation process.
71
+
72
+ In default, everything will be saved at `` ./logs/``
73
+
74
+ ### REFUGE: Optic-disc Segmentation from Fundus Images (2D)
75
+ [REFUGE](https://refuge.grand-challenge.org/) dataset contains 1200 fundus images with optic disc/cup segmentations and clinical glaucoma labels.
76
+
77
+ 1. Dowaload the dataset manually from [here](https://huggingface.co/datasets/realslimman/REFUGE-MultiRater/tree/main), or using command lines:
78
+
79
+ ``git lfs install``
80
+
81
+ ``git clone [email protected]:datasets/realslimman/REFUGE-MultiRater``
82
+
83
+ unzip and put the dataset to the target folder
84
+
85
+ ``unzip ./REFUGE-MultiRater.zip``
86
+
87
+ ``mv REFUGE-MultiRater ./data``
88
+
89
+ 2. For training the adapter, run: ``python train.py -net sam -mod sam_adpt -exp_name REFUGE-MSAdapt -sam_ckpt ./checkpoint/sam/sam_vit_b_01ec64.pth -image_size 1024 -b 32 -dataset REFUGE -data_path ./data/REFUGE-MultiRater``
90
+ you can change "exp_name" to anything you want.
91
+
92
+ You can descrease the ``image size`` or batch size ``b`` if out of memory.
93
+
94
+ ### Abdominal Multiple Organs Segmentation (3D)
95
+
96
+ This tutorial demonstrates how MSA can adapt SAM to 3D multi-organ segmentation task using the BTCV challenge dataset.
97
+ For BTCV dataset, under Institutional Review Board (IRB) supervision, 50 abdomen CT scans of were randomly selected from a combination of an ongoing colorectal cancer chemotherapy trial, and a retrospective ventral hernia study. The 50 scans were captured during portal venous contrast phase with variable volume sizes (512 x 512 x 85 - 512 x 512 x 198) and field of views (approx. 280 x 280 x 280 mm3 - 500 x 500 x 650 mm3). The in-plane resolution varies from 0.54 x 0.54 mm2 to 0.98 x 0.98 mm2, while the slice thickness ranges from 2.5 mm to 5.0 mm.
98
+ Target: 13 abdominal organs including
99
+ Spleen
100
+ Right Kidney
101
+ Left Kidney
102
+ Gallbladder
103
+ Esophagus
104
+ Liver
105
+ Stomach
106
+ Aorta
107
+ IVC
108
+ Portal and Splenic Veins
109
+ Pancreas
110
+ Right adrenal gland
111
+ Left adrenal gland.
112
+ Modality: CT
113
+ Size: 30 3D volumes (24 Training + 6 Testing)
114
+ Challenge: BTCV MICCAI Challenge
115
+ The following figure shows image patches with the organ sub-regions that are annotated in the CT (top left) and the final labels for the whole dataset (right).
116
+ 1. Prepare BTCV dataset following [MONAI](https://docs.monai.io/en/stable/index.html) instruction:
117
+ Download BTCV dataset from: https://www.synapse.org/#!Synapse:syn3193805/wiki/217752. After you open the link, navigate to the "Files" tab, then download Abdomen/RawData.zip.
118
+ After downloading the zip file, unzip. Then put images from RawData/Training/img in ../data/imagesTr, and put labels from RawData/Training/label in ../data/labelsTr.
119
+ Download the json file for data splits from this [link](https://drive.google.com/file/d/1qcGh41p-rI3H_sQ0JwOAhNiQSXriQqGi/view). Place the JSON file at ../data/dataset_0.json.
120
+ 2. For the Adaptation, run: ``python train.py -net sam -mod sam_adpt -exp_name msa-3d-sam-btcv -sam_ckpt ./checkpoint/sam/sam_vit_b_01ec64.pth -image_size 1024 -b 8 -dataset decathlon -thd True -chunk 96 -dataset ../data -num_sample 4``
121
+ You can modify following parameters to save the memory usage: '-b' the batch size, '-chunk' the 3D depth (channel) for each sample, '-num_sample' number of samples for [Monai.RandCropByPosNegLabeld](https://docs.monai.io/en/stable/transforms.html#randcropbyposneglabeld), 'evl_chunk' the 3D channel split step in the evaluation, decrease it if out of memory in the evaluation.
122
+ ## Run on your own dataset
123
+ It is simple to run MSA on the other datasets. Just write another dataset class following which in `` ./dataset.py``. You only need to make sure you return a dict with
124
+ {
125
+ 'image': A tensor saving images with size [C,H,W] for 2D image, size [C, H, W, D] for 3D data.
126
+ D is the depth of 3D volume, C is the channel of a scan/frame, which is commonly 1 for CT, MRI, US data.
127
+ If processing, say like a colorful surgical video, D could the number of time frames, and C will be 3 for a RGB frame.
128
+ 'label': The target masks. Same size with the images except the resolutions (H and W).
129
+ 'p_label': The prompt label to decide positive/negative prompt. To simplify, you can always set 1 if don't need the negative prompt function.
130
+ 'pt': The prompt. Should be the same as that in SAM, e.g., a click prompt should be [x of click, y of click], one click for each scan/frame if using 3d data.
131
+ 'image_meta_dict': Optional. if you want save/visulize the result, you should put the name of the image in it with the key ['filename_or_obj'].
132
+ ...(others as you want)
133
+ }
134
+ Welcome to open issues if you meet any problem. It would be appreciated if you could contribute your dataset extensions. Unlike natural images, medical images vary a lot depending on different tasks. Expanding the generalization of a method requires everyone's efforts.
135
+
136
+ ### TODO LIST
137
+
138
+ - [ ] Jupyter tutorials.
139
+ - [x] Fix bugs in BTCV. Add BTCV example.
140
+ - [ ] Release REFUGE2, BraTs dataloaders and examples
141
+ - [x] Changable Image Resolution
142
+ - [ ] Fix bugs in Multi-GPU parallel
143
+ - [x] Sample and Vis in training
144
+ - [ ] Release general data pre-processing and post-processing
145
+ - [x] Release evaluation
146
+ - [ ] Deploy on HuggingFace
147
+ - [x] configuration
148
+ - [ ] Release SSL code
149
+ - [ ] Release Medical Adapter Zoo
150
+
151
+ ## Cite
152
+ ~~~
153
+ @article{wu2023medical,
154
+ title={Medical sam adapter: Adapting segment anything model for medical image segmentation},
155
+ author={Wu, Junde and Fu, Rao and Fang, Huihui and Liu, Yuanpei and Wang, Zhaowei and Xu, Yanwu and Jin, Yueming and Arbel, Tal},
156
+ journal={arXiv preprint arXiv:2304.12620},
157
+ year={2023}
158
+ }
159
+ ~~~