AbominationScience-12B-v4

When the choice is not random.

AbominationScienceLogo256.png

This is an interesting merge of 11 cool models, created using mergekit. Enjoy exploring :)

Merge Details

Method

This model was merged using the multistep process and remerge with some model variations for best result.

Models

The following models were included in the merge:

Configuration

The following YAML configurations was used to produce this model:

# AbominationScience
# It's a good model, I used it as a base for this merge.
models:
  - model: Trappu/Abomination-merge-attempt-12B
  - model: benhaotang/nemo-math-science-philosophy-12B
merge_method: slerp
base_model: Trappu/Abomination-merge-attempt-12B
dtype: bfloat16
parameters:
  t: [0.8, 0.2, 0.8, 0.2, 0.8, 0.2, 0.8]

# SCUMCL
models:
  - model: VongolaChouko/Starcannon-Unleashed-12B-v1.0
  - model: FallenMerick/MN-Chunky-Lotus-12B
merge_method: slerp
base_model: VongolaChouko/Starcannon-Unleashed-12B-v1.0
dtype: bfloat16
parameters:
  t: [0.7, 0.3, 0.7, 0.3, 0.7, 0.3, 0.7]

# SISMMU
models:
  - model: Nohobby/MN-12B-Siskin-v0.2
  - model: ThijsL202/MadMix-Unleashed-12B
merge_method: slerp
base_model: Nohobby/MN-12B-Siskin-v0.2
dtype: bfloat16
parameters:
  t: [0, 0.5, 1, 0.5, 0]

# PLECAD
models:
  - model: GalrionSoftworks/Pleiades-12B-v1
  - model: GalrionSoftworks/Canidori-12B-v1
merge_method: slerp
base_model: GalrionSoftworks/Pleiades-12B-v1
dtype: bfloat16
parameters:
  t: [0.7, 0.3, 0.7, 0.3, 0.7, 0.3, 0.7]

# Positive-12B-v1 and Negative-12B-v1 are the basis of diversity for the base model.
# I've lost the exact config, but it was most likely a slerp like the one in SCUMCL/SISMMU/PLECAD.
# Positive-12B-v1 = SCUMCL + SISMMU.
# Negative-12B-v1 = PLECAD + AbominationScience.

# AbominationScience-12B-v2
models:
  - model: F:/Positive-12B-v1
    parameters:
      density: [0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8, 0.1, 0.9,  0.1, 0.9, 0.1, 0.9,  0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6, 0.5]
      weight:  [0.5, 0.6, 0.4, 0.7, 0.3, 0.8, 0.2, 0.9, 0.1,  0.9, 0.1, 0.9, 0.1,  0.9, 0.1, 0.8, 0.2, 0.7, 0.3, 0.6, 0.4, 0.5]
  - model: F:/Negative-12B-v1
    parameters:
      density: [0.5, 0.6, 0.4, 0.7, 0.3, 0.8, 0.2, 0.9, 0.1,  0.9, 0.1, 0.9, 0.1,  0.9, 0.1, 0.8, 0.2, 0.7, 0.3, 0.6, 0.4, 0.5]
      weight:  [0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8, 0.1, 0.9,  0.1, 0.9, 0.1, 0.9,  0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6, 0.5]
merge_method: dare_ties
base_model: F:/AbominationScience
dtype: bfloat16

# AbominationScience-12B-v3
# Della merge with a good base to form an interesting core
models:
  - model: F:/AbominationScience
    parameters:
      weight:  [0.5, 0.6, 0.4, 0.7, 0.3, 0.8, 0.2, 0.8, 0.2, 0.7, 0.3, 0.6, 0.4, 0.5]
      density: [0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6, 0.5]
merge_method: della
parameters:
  epsilon: 0.123456789
  lambda:  0.987654321
base_model: F:/AbominationScience-12B-v2
dtype: bfloat16

# AbominationScience-12B-v4
# Final shift the model to three very good bases.
models:
  - model: inflatebot/MN-12B-Mag-Mell-R1
  - model: FallenMerick/MN-Violet-Lotus-12B
  - model: Azazelle/MN-Halide-12b-v1.0
merge_method: model_stock
base_model: F:/AbominationScience-12B-v3
dtype: bfloat16

My thanks to the authors of the original models, your work is incredible. Have a good time 🖤

Downloads last month
53
Safetensors
Model size
12.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Khetterman/AbominationScience-12B-v4