WEBing commited on
Commit
388bd8b
·
1 Parent(s): 5fe5ca4
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +19 -1
  3. eva_clip/__init__.py +11 -0
  4. eva_clip/__pycache__/__init__.cpython-39.pyc +0 -0
  5. eva_clip/__pycache__/constants.cpython-39.pyc +0 -0
  6. eva_clip/__pycache__/eva_vit_model.cpython-39.pyc +0 -0
  7. eva_clip/__pycache__/factory.cpython-39.pyc +0 -0
  8. eva_clip/__pycache__/hf_configs.cpython-39.pyc +0 -0
  9. eva_clip/__pycache__/hf_model.cpython-39.pyc +0 -0
  10. eva_clip/__pycache__/loss.cpython-39.pyc +0 -0
  11. eva_clip/__pycache__/model.cpython-39.pyc +0 -0
  12. eva_clip/__pycache__/modified_resnet.cpython-39.pyc +0 -0
  13. eva_clip/__pycache__/openai.cpython-39.pyc +0 -0
  14. eva_clip/__pycache__/pretrained.cpython-39.pyc +0 -0
  15. eva_clip/__pycache__/rope.cpython-39.pyc +0 -0
  16. eva_clip/__pycache__/timm_model.cpython-39.pyc +0 -0
  17. eva_clip/__pycache__/tokenizer.cpython-39.pyc +0 -0
  18. eva_clip/__pycache__/transform.cpython-39.pyc +0 -0
  19. eva_clip/__pycache__/transformer.cpython-39.pyc +0 -0
  20. eva_clip/__pycache__/utils.cpython-39.pyc +0 -0
  21. eva_clip/bpe_simple_vocab_16e6.txt.gz +3 -0
  22. eva_clip/constants.py +2 -0
  23. eva_clip/eva_vit_model.py +532 -0
  24. eva_clip/factory.py +459 -0
  25. eva_clip/hf_configs.py +57 -0
  26. eva_clip/hf_model.py +248 -0
  27. eva_clip/loss.py +138 -0
  28. eva_clip/model.py +439 -0
  29. eva_clip/model_configs/EVA01-CLIP-B-16.json +19 -0
  30. eva_clip/model_configs/EVA01-CLIP-g-14-plus.json +24 -0
  31. eva_clip/model_configs/EVA01-CLIP-g-14.json +24 -0
  32. eva_clip/model_configs/EVA02-CLIP-B-16.json +29 -0
  33. eva_clip/model_configs/EVA02-CLIP-L-14-336.json +29 -0
  34. eva_clip/model_configs/EVA02-CLIP-L-14-448.json +29 -0
  35. eva_clip/model_configs/EVA02-CLIP-L-14.json +29 -0
  36. eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json +25 -0
  37. eva_clip/model_configs/EVA02-CLIP-bigE-14.json +25 -0
  38. eva_clip/modified_resnet.py +181 -0
  39. eva_clip/openai.py +144 -0
  40. eva_clip/pretrained.py +332 -0
  41. eva_clip/rope.py +137 -0
  42. eva_clip/timm_model.py +122 -0
  43. eva_clip/tokenizer.py +201 -0
  44. eva_clip/transform.py +103 -0
  45. eva_clip/transformer.py +737 -0
  46. eva_clip/utils.py +326 -0
  47. generation_config.json +6 -0
  48. mm_projector_builder.py +59 -0
  49. modeling_kangaroo.py +1461 -0
  50. pytorch_model.bin +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ .bin filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -4,4 +4,22 @@ language:
4
  - en
5
  - zh
6
  pipeline_tag: visual-question-answering
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - en
5
  - zh
6
  pipeline_tag: visual-question-answering
7
+ ---
8
+ # Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input
9
+
10
+ ## Release
11
+ - [2024/07/17] 🔥 **Kangaroo** has been released. We release [blog](https://kangaroogroup.github.io/Kangaroo.github.io/) and [model](https://huggingface.co/KangarooGroup/kangaroo). Please check out the blog for details.
12
+
13
+
14
+ ## Citation
15
+
16
+ If you find it useful for your research , please cite related papers/blogs using this BibTeX:
17
+ ```bibtex
18
+
19
+ @misc{liu24kangaroo,
20
+ title={Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input},
21
+ url={https://kangaroogroup.github.io/Kangaroo.github.io/},
22
+ author={Jiajun Liu and Yibing Wang and Hanghang Ma and Xiaoping Wu and Xiaoqi Ma and Jie Hu},
23
+ month={July},
24
+ year={2024}
25
+ }
eva_clip/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
2
+ from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer
3
+ from .factory import list_models, add_model_config, get_model_config, load_checkpoint
4
+ from .loss import ClipLoss
5
+ from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\
6
+ convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
7
+ from .openai import load_openai_model, list_openai_models
8
+ from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\
9
+ get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
10
+ from .tokenizer import SimpleTokenizer, tokenize
11
+ from .transform import image_transform
eva_clip/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (1.28 kB). View file
 
eva_clip/__pycache__/constants.cpython-39.pyc ADDED
Binary file (313 Bytes). View file
 
eva_clip/__pycache__/eva_vit_model.cpython-39.pyc ADDED
Binary file (15.8 kB). View file
 
eva_clip/__pycache__/factory.cpython-39.pyc ADDED
Binary file (11.2 kB). View file
 
eva_clip/__pycache__/hf_configs.cpython-39.pyc ADDED
Binary file (714 Bytes). View file
 
eva_clip/__pycache__/hf_model.cpython-39.pyc ADDED
Binary file (7.38 kB). View file
 
eva_clip/__pycache__/loss.cpython-39.pyc ADDED
Binary file (3.32 kB). View file
 
eva_clip/__pycache__/model.cpython-39.pyc ADDED
Binary file (13.2 kB). View file
 
eva_clip/__pycache__/modified_resnet.cpython-39.pyc ADDED
Binary file (6.33 kB). View file
 
eva_clip/__pycache__/openai.cpython-39.pyc ADDED
Binary file (4.79 kB). View file
 
eva_clip/__pycache__/pretrained.cpython-39.pyc ADDED
Binary file (9.01 kB). View file
 
eva_clip/__pycache__/rope.cpython-39.pyc ADDED
Binary file (5.25 kB). View file
 
eva_clip/__pycache__/timm_model.cpython-39.pyc ADDED
Binary file (3.94 kB). View file
 
eva_clip/__pycache__/tokenizer.cpython-39.pyc ADDED
Binary file (8.42 kB). View file
 
eva_clip/__pycache__/transform.cpython-39.pyc ADDED
Binary file (2.78 kB). View file
 
eva_clip/__pycache__/transformer.cpython-39.pyc ADDED
Binary file (20.7 kB). View file
 
eva_clip/__pycache__/utils.cpython-39.pyc ADDED
Binary file (9.61 kB). View file
 
eva_clip/bpe_simple_vocab_16e6.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
3
+ size 1356917
eva_clip/constants.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
2
+ OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
eva_clip/eva_vit_model.py ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Adapted from https://github.com/microsoft/unilm/tree/master/beit
3
+ # --------------------------------------------------------
4
+ import math
5
+ import os
6
+ from functools import partial
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ try:
11
+ from timm.models.layers import drop_path, to_2tuple, trunc_normal_
12
+ except:
13
+ from timm.layers import drop_path, to_2tuple, trunc_normal_
14
+
15
+ from .transformer import PatchDropout
16
+ from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
17
+
18
+ if os.getenv('ENV_TYPE') == 'deepspeed':
19
+ try:
20
+ from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
21
+ except:
22
+ from torch.utils.checkpoint import checkpoint
23
+ else:
24
+ from torch.utils.checkpoint import checkpoint
25
+
26
+ try:
27
+ import xformers.ops as xops
28
+ except ImportError:
29
+ xops = None
30
+ print("Please 'pip install xformers'")
31
+
32
+
33
+ class DropPath(nn.Module):
34
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
35
+ """
36
+ def __init__(self, drop_prob=None):
37
+ super(DropPath, self).__init__()
38
+ self.drop_prob = drop_prob
39
+
40
+ def forward(self, x):
41
+ return drop_path(x, self.drop_prob, self.training)
42
+
43
+ def extra_repr(self) -> str:
44
+ return 'p={}'.format(self.drop_prob)
45
+
46
+
47
+ class Mlp(nn.Module):
48
+ def __init__(
49
+ self,
50
+ in_features,
51
+ hidden_features=None,
52
+ out_features=None,
53
+ act_layer=nn.GELU,
54
+ norm_layer=nn.LayerNorm,
55
+ drop=0.,
56
+ subln=False,
57
+
58
+ ):
59
+ super().__init__()
60
+ out_features = out_features or in_features
61
+ hidden_features = hidden_features or in_features
62
+ self.fc1 = nn.Linear(in_features, hidden_features)
63
+ self.act = act_layer()
64
+
65
+ self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
66
+
67
+ self.fc2 = nn.Linear(hidden_features, out_features)
68
+ self.drop = nn.Dropout(drop)
69
+
70
+ def forward(self, x):
71
+ x = self.fc1(x)
72
+ x = self.act(x)
73
+ # x = self.drop(x)
74
+ # commit this for the orignal BERT implement
75
+ x = self.ffn_ln(x)
76
+
77
+ x = self.fc2(x)
78
+ x = self.drop(x)
79
+ return x
80
+
81
+ class SwiGLU(nn.Module):
82
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
83
+ norm_layer=nn.LayerNorm, subln=False):
84
+ super().__init__()
85
+ out_features = out_features or in_features
86
+ hidden_features = hidden_features or in_features
87
+
88
+ self.w1 = nn.Linear(in_features, hidden_features)
89
+ self.w2 = nn.Linear(in_features, hidden_features)
90
+
91
+ self.act = act_layer()
92
+ self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
93
+ self.w3 = nn.Linear(hidden_features, out_features)
94
+
95
+ self.drop = nn.Dropout(drop)
96
+
97
+ def forward(self, x):
98
+ x1 = self.w1(x)
99
+ x2 = self.w2(x)
100
+ hidden = self.act(x1) * x2
101
+ x = self.ffn_ln(hidden)
102
+ x = self.w3(x)
103
+ x = self.drop(x)
104
+ return x
105
+
106
+ class Attention(nn.Module):
107
+ def __init__(
108
+ self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
109
+ proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
110
+ super().__init__()
111
+ self.num_heads = num_heads
112
+ head_dim = dim // num_heads
113
+ if attn_head_dim is not None:
114
+ head_dim = attn_head_dim
115
+ all_head_dim = head_dim * self.num_heads
116
+ self.scale = qk_scale or head_dim ** -0.5
117
+
118
+ self.subln = subln
119
+ if self.subln:
120
+ self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
121
+ self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
122
+ self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
123
+ else:
124
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
125
+
126
+ if qkv_bias:
127
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
128
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
129
+ else:
130
+ self.q_bias = None
131
+ self.v_bias = None
132
+
133
+ if window_size:
134
+ self.window_size = window_size
135
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
136
+ self.relative_position_bias_table = nn.Parameter(
137
+ torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
138
+ # cls to token & token 2 cls & cls to cls
139
+
140
+ # get pair-wise relative position index for each token inside the window
141
+ coords_h = torch.arange(window_size[0])
142
+ coords_w = torch.arange(window_size[1])
143
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
144
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
145
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
146
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
147
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
148
+ relative_coords[:, :, 1] += window_size[1] - 1
149
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
150
+ relative_position_index = \
151
+ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
152
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
153
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
154
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
155
+ relative_position_index[0, 0] = self.num_relative_distance - 1
156
+
157
+ self.register_buffer("relative_position_index", relative_position_index)
158
+ else:
159
+ self.window_size = None
160
+ self.relative_position_bias_table = None
161
+ self.relative_position_index = None
162
+
163
+ self.attn_drop = nn.Dropout(attn_drop)
164
+ self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
165
+ # self.proj = nn.Linear(all_head_dim, all_head_dim)
166
+ self.proj = nn.Linear(all_head_dim, dim)
167
+ self.proj_drop = nn.Dropout(proj_drop)
168
+ self.xattn = xattn
169
+ self.xattn = False
170
+ self.xattn_drop = attn_drop
171
+
172
+ self.rope = rope
173
+
174
+ def forward(self, x, rel_pos_bias=None, attn_mask=None):
175
+ B, N, C = x.shape
176
+ if self.subln:
177
+ q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
178
+ k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
179
+ v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
180
+
181
+ q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
182
+ k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
183
+ v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
184
+ else:
185
+
186
+ qkv_bias = None
187
+ if self.q_bias is not None:
188
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
189
+
190
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
191
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
192
+ q, k, v = qkv[0], qkv[1], qkv[2]
193
+
194
+ if self.rope:
195
+ # slightly fast impl
196
+ q_t = q[:, :, 1:, :]
197
+ ro_q_t = self.rope(q_t)
198
+ q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
199
+
200
+ k_t = k[:, :, 1:, :]
201
+ ro_k_t = self.rope(k_t)
202
+ k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
203
+
204
+ if self.xattn:
205
+ q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
206
+ k = k.permute(0, 2, 1, 3)
207
+ v = v.permute(0, 2, 1, 3)
208
+
209
+ x = xops.memory_efficient_attention(
210
+ q, k, v,
211
+ p=self.xattn_drop,
212
+ scale=self.scale,
213
+ )
214
+ x = x.reshape(B, N, -1)
215
+ x = self.inner_attn_ln(x)
216
+ x = self.proj(x)
217
+ x = self.proj_drop(x)
218
+ else:
219
+ q = q * self.scale
220
+ attn = (q @ k.transpose(-2, -1))
221
+
222
+ if self.relative_position_bias_table is not None:
223
+ relative_position_bias = \
224
+ self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
225
+ self.window_size[0] * self.window_size[1] + 1,
226
+ self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
227
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
228
+ attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
229
+
230
+ if rel_pos_bias is not None:
231
+ attn = attn + rel_pos_bias.type_as(attn)
232
+
233
+ if attn_mask is not None:
234
+ attn_mask = attn_mask.bool()
235
+ attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
236
+
237
+ attn = attn.softmax(dim=-1)
238
+ attn = self.attn_drop(attn)
239
+
240
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
241
+ x = self.inner_attn_ln(x)
242
+ x = self.proj(x)
243
+ x = self.proj_drop(x)
244
+ return x
245
+
246
+
247
+ class Block(nn.Module):
248
+
249
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
250
+ drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
251
+ window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
252
+ subln=False, naiveswiglu=False):
253
+ super().__init__()
254
+ self.norm1 = norm_layer(dim)
255
+ self.attn = Attention(
256
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
257
+ attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
258
+ xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
259
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
260
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
261
+ self.norm2 = norm_layer(dim)
262
+ mlp_hidden_dim = int(dim * mlp_ratio)
263
+
264
+ if naiveswiglu:
265
+ self.mlp = SwiGLU(
266
+ in_features=dim,
267
+ hidden_features=mlp_hidden_dim,
268
+ subln=subln,
269
+ norm_layer=norm_layer,
270
+ )
271
+ else:
272
+ self.mlp = Mlp(
273
+ in_features=dim,
274
+ hidden_features=mlp_hidden_dim,
275
+ act_layer=act_layer,
276
+ subln=subln,
277
+ drop=drop
278
+ )
279
+
280
+ if init_values is not None and init_values > 0:
281
+ self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
282
+ self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
283
+ else:
284
+ self.gamma_1, self.gamma_2 = None, None
285
+
286
+ self.postnorm = postnorm
287
+
288
+ def forward(self, x, rel_pos_bias=None, attn_mask=None):
289
+ if self.gamma_1 is None:
290
+ if self.postnorm:
291
+ x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
292
+ x = x + self.drop_path(self.norm2(self.mlp(x)))
293
+ else:
294
+ x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
295
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
296
+ else:
297
+ if self.postnorm:
298
+ x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
299
+ x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
300
+ else:
301
+ x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
302
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
303
+ return x
304
+
305
+
306
+ class PatchEmbed(nn.Module):
307
+ """ Image to Patch Embedding
308
+ """
309
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
310
+ super().__init__()
311
+ img_size = to_2tuple(img_size)
312
+ patch_size = to_2tuple(patch_size)
313
+ num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
314
+ self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
315
+ self.img_size = img_size
316
+ self.patch_size = patch_size
317
+ self.num_patches = num_patches
318
+
319
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
320
+
321
+ def forward(self, x, **kwargs):
322
+ B, C, H, W = x.shape
323
+ # FIXME look at relaxing size constraints
324
+ assert H == self.img_size[0] and W == self.img_size[1], \
325
+ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
326
+ x = self.proj(x).flatten(2).transpose(1, 2)
327
+ return x
328
+
329
+
330
+ class RelativePositionBias(nn.Module):
331
+
332
+ def __init__(self, window_size, num_heads):
333
+ super().__init__()
334
+ self.window_size = window_size
335
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
336
+ self.relative_position_bias_table = nn.Parameter(
337
+ torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
338
+ # cls to token & token 2 cls & cls to cls
339
+
340
+ # get pair-wise relative position index for each token inside the window
341
+ coords_h = torch.arange(window_size[0])
342
+ coords_w = torch.arange(window_size[1])
343
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
344
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
345
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
346
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
347
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
348
+ relative_coords[:, :, 1] += window_size[1] - 1
349
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
350
+ relative_position_index = \
351
+ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
352
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
353
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
354
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
355
+ relative_position_index[0, 0] = self.num_relative_distance - 1
356
+
357
+ self.register_buffer("relative_position_index", relative_position_index)
358
+
359
+ def forward(self):
360
+ relative_position_bias = \
361
+ self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
362
+ self.window_size[0] * self.window_size[1] + 1,
363
+ self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
364
+ return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
365
+
366
+
367
+ class EVAVisionTransformer(nn.Module):
368
+ """ Vision Transformer with support for patch or hybrid CNN input stage
369
+ """
370
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
371
+ num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
372
+ drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
373
+ use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
374
+ use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
375
+ pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
376
+ super().__init__()
377
+ self.image_size = img_size
378
+ self.num_classes = num_classes
379
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
380
+
381
+ self.patch_embed = PatchEmbed(
382
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
383
+ num_patches = self.patch_embed.num_patches
384
+
385
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
386
+ # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
387
+ if use_abs_pos_emb:
388
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
389
+ else:
390
+ self.pos_embed = None
391
+ self.pos_drop = nn.Dropout(p=drop_rate)
392
+
393
+ if use_shared_rel_pos_bias:
394
+ self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
395
+ else:
396
+ self.rel_pos_bias = None
397
+
398
+ if rope:
399
+ half_head_dim = embed_dim // num_heads // 2
400
+ hw_seq_len = img_size // patch_size
401
+ self.rope = VisionRotaryEmbeddingFast(
402
+ dim=half_head_dim,
403
+ pt_seq_len=pt_hw_seq_len,
404
+ ft_seq_len=hw_seq_len if intp_freq else None,
405
+ # patch_dropout=patch_dropout
406
+ )
407
+ else:
408
+ self.rope = None
409
+
410
+ self.naiveswiglu = naiveswiglu
411
+
412
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
413
+ self.use_rel_pos_bias = use_rel_pos_bias
414
+ self.blocks = nn.ModuleList([
415
+ Block(
416
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
417
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
418
+ init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
419
+ xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
420
+ for i in range(depth)])
421
+ #self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
422
+ #self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
423
+ #self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
424
+
425
+ if self.pos_embed is not None:
426
+ trunc_normal_(self.pos_embed, std=.02)
427
+
428
+ trunc_normal_(self.cls_token, std=.02)
429
+ # trunc_normal_(self.mask_token, std=.02)
430
+
431
+ self.apply(self._init_weights)
432
+ self.fix_init_weight()
433
+
434
+ #if isinstance(self.head, nn.Linear):
435
+ # trunc_normal_(self.head.weight, std=.02)
436
+ # self.head.weight.data.mul_(init_scale)
437
+ # self.head.bias.data.mul_(init_scale)
438
+
439
+ # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
440
+ self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
441
+
442
+ self.grad_checkpointing = grad_checkpointing
443
+
444
+ def fix_init_weight(self):
445
+ def rescale(param, layer_id):
446
+ param.div_(math.sqrt(2.0 * layer_id))
447
+
448
+ for layer_id, layer in enumerate(self.blocks):
449
+ rescale(layer.attn.proj.weight.data, layer_id + 1)
450
+ if self.naiveswiglu:
451
+ rescale(layer.mlp.w3.weight.data, layer_id + 1)
452
+ else:
453
+ rescale(layer.mlp.fc2.weight.data, layer_id + 1)
454
+
455
+ def get_cast_dtype(self) -> torch.dtype:
456
+ return self.blocks[0].mlp.fc2.weight.dtype
457
+
458
+ def _init_weights(self, m):
459
+ if isinstance(m, nn.Linear):
460
+ trunc_normal_(m.weight, std=.02)
461
+ if m.bias is not None:
462
+ nn.init.constant_(m.bias, 0)
463
+ elif isinstance(m, nn.LayerNorm):
464
+ nn.init.constant_(m.bias, 0)
465
+ nn.init.constant_(m.weight, 1.0)
466
+
467
+ def get_num_layers(self):
468
+ return len(self.blocks)
469
+
470
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
471
+ assert unlocked_groups == 0, 'partial locking not currently supported for this model'
472
+ for param in self.parameters():
473
+ param.requires_grad = False
474
+
475
+ @torch.jit.ignore
476
+ def set_grad_checkpointing(self, enable=True):
477
+ self.grad_checkpointing = enable
478
+
479
+ @torch.jit.ignore
480
+ def no_weight_decay(self):
481
+ return {'pos_embed', 'cls_token'}
482
+
483
+ def get_classifier(self):
484
+ return self.head
485
+
486
+ def reset_classifier(self, num_classes, global_pool=''):
487
+ self.num_classes = num_classes
488
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
489
+
490
+ def forward_features(self, x, return_all_features=False):
491
+
492
+ x = self.patch_embed(x)
493
+ batch_size, seq_len, _ = x.size()
494
+
495
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
496
+ x = torch.cat((cls_tokens, x), dim=1)
497
+ if self.pos_embed is not None:
498
+ x = x + self.pos_embed
499
+ x = self.pos_drop(x)
500
+
501
+ # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
502
+ if os.getenv('RoPE') == '1':
503
+ if self.training and not isinstance(self.patch_dropout, nn.Identity):
504
+ x, patch_indices_keep = self.patch_dropout(x)
505
+ self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
506
+ else:
507
+ self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
508
+ x = self.patch_dropout(x)
509
+ else:
510
+ x = self.patch_dropout(x)
511
+
512
+ rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
513
+ for blk in self.blocks:
514
+ if self.grad_checkpointing:
515
+ x = checkpoint(blk, x, (rel_pos_bias,))
516
+ else:
517
+ x = blk(x, rel_pos_bias=rel_pos_bias)
518
+
519
+ if not return_all_features:
520
+ x = self.norm(x)
521
+ if self.fc_norm is not None:
522
+ return self.fc_norm(x.mean(1))
523
+ else:
524
+ return x[:, 0]
525
+ return x[:, 1:]
526
+
527
+ def forward(self, x, return_all_features=True):
528
+ if return_all_features:
529
+ return self.forward_features(x, return_all_features)
530
+ x = self.forward_features(x)
531
+ x = self.head(x)
532
+ return x
eva_clip/factory.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ import pathlib
5
+ import re
6
+ from copy import deepcopy
7
+ from pathlib import Path
8
+ from typing import Optional, Tuple, Union, Dict, Any
9
+ import torch
10
+
11
+ from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
12
+ from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
13
+ get_cast_dtype
14
+ from .openai import load_openai_model
15
+ from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
16
+ from .transform import image_transform
17
+ from .tokenizer import HFTokenizer, tokenize
18
+ from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
19
+
20
+
21
+ _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
22
+ _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
23
+
24
+
25
+ def _natural_key(string_):
26
+ return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
27
+
28
+
29
+ def _rescan_model_configs():
30
+ global _MODEL_CONFIGS
31
+
32
+ config_ext = ('.json',)
33
+ config_files = []
34
+ for config_path in _MODEL_CONFIG_PATHS:
35
+ if config_path.is_file() and config_path.suffix in config_ext:
36
+ config_files.append(config_path)
37
+ elif config_path.is_dir():
38
+ for ext in config_ext:
39
+ config_files.extend(config_path.glob(f'*{ext}'))
40
+
41
+ for cf in config_files:
42
+ with open(cf, "r", encoding="utf8") as f:
43
+ model_cfg = json.load(f)
44
+ if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
45
+ _MODEL_CONFIGS[cf.stem] = model_cfg
46
+
47
+ _MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
48
+
49
+
50
+ _rescan_model_configs() # initial populate of model config registry
51
+
52
+
53
+ def list_models():
54
+ """ enumerate available model architectures based on config files """
55
+ return list(_MODEL_CONFIGS.keys())
56
+
57
+
58
+ def add_model_config(path):
59
+ """ add model config path or file and update registry """
60
+ if not isinstance(path, Path):
61
+ path = Path(path)
62
+ _MODEL_CONFIG_PATHS.append(path)
63
+ _rescan_model_configs()
64
+
65
+
66
+ def get_model_config(model_name):
67
+ if model_name in _MODEL_CONFIGS:
68
+ return deepcopy(_MODEL_CONFIGS[model_name])
69
+ else:
70
+ return None
71
+
72
+
73
+ def get_tokenizer(model_name):
74
+ config = get_model_config(model_name)
75
+ tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
76
+ return tokenizer
77
+
78
+
79
+ # loading openai CLIP weights when is_openai=True for training
80
+ def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
81
+ if is_openai:
82
+ model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
83
+ state_dict = model.state_dict()
84
+ for key in ["input_resolution", "context_length", "vocab_size"]:
85
+ state_dict.pop(key, None)
86
+ else:
87
+ checkpoint = torch.load(checkpoint_path, map_location=map_location)
88
+ for mk in model_key.split('|'):
89
+ if isinstance(checkpoint, dict) and mk in checkpoint:
90
+ state_dict = checkpoint[mk]
91
+ break
92
+ else:
93
+ state_dict = checkpoint
94
+ if next(iter(state_dict.items()))[0].startswith('module'):
95
+ state_dict = {k[7:]: v for k, v in state_dict.items()}
96
+
97
+ for k in skip_list:
98
+ if k in list(state_dict.keys()):
99
+ logging.info(f"Removing key {k} from pretrained checkpoint")
100
+ del state_dict[k]
101
+
102
+ if os.getenv('RoPE') == '1':
103
+ for k in list(state_dict.keys()):
104
+ if 'freqs_cos' in k or 'freqs_sin' in k:
105
+ del state_dict[k]
106
+ return state_dict
107
+
108
+
109
+
110
+ def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
111
+ state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
112
+ # detect old format and make compatible with new format
113
+ if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
114
+ state_dict = convert_to_custom_text_state_dict(state_dict)
115
+ if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
116
+ state_dict['logit_scale'] = state_dict['text.logit_scale']
117
+ del state_dict['text.logit_scale']
118
+
119
+ # resize_clip_pos_embed for CLIP and open CLIP
120
+ if 'visual.positional_embedding' in state_dict:
121
+ resize_clip_pos_embed(state_dict, model)
122
+ # specified to eva_vit_model
123
+ elif 'visual.pos_embed' in state_dict:
124
+ resize_evaclip_pos_embed(state_dict, model)
125
+
126
+ # resize_clip_pos_embed(state_dict, model)
127
+ incompatible_keys = model.load_state_dict(state_dict, strict=strict)
128
+ logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
129
+ return incompatible_keys
130
+
131
+ def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
132
+ state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
133
+
134
+ for k in list(state_dict.keys()):
135
+ if not k.startswith('visual.'):
136
+ del state_dict[k]
137
+ for k in list(state_dict.keys()):
138
+ if k.startswith('visual.'):
139
+ new_k = k[7:]
140
+ state_dict[new_k] = state_dict[k]
141
+ del state_dict[k]
142
+ return state_dict
143
+
144
+ def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
145
+ state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
146
+
147
+ for k in list(state_dict.keys()):
148
+ if k.startswith('visual.'):
149
+ del state_dict[k]
150
+ return state_dict
151
+
152
+ def get_pretrained_tag(pretrained_model):
153
+ pretrained_model = pretrained_model.lower()
154
+ if "laion" in pretrained_model or "open_clip" in pretrained_model:
155
+ return "open_clip"
156
+ elif "openai" in pretrained_model:
157
+ return "clip"
158
+ elif "eva" in pretrained_model and "clip" in pretrained_model:
159
+ return "eva_clip"
160
+ else:
161
+ return "other"
162
+
163
+ def load_pretrained_checkpoint(
164
+ model,
165
+ visual_checkpoint_path,
166
+ text_checkpoint_path,
167
+ strict=True,
168
+ visual_model=None,
169
+ text_model=None,
170
+ model_key="model|module|state_dict",
171
+ skip_list=[]):
172
+ visual_tag = get_pretrained_tag(visual_model)
173
+ text_tag = get_pretrained_tag(text_model)
174
+
175
+ logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
176
+ visual_incompatible_keys, text_incompatible_keys = None, None
177
+ if visual_checkpoint_path:
178
+ if visual_tag == "eva_clip" or visual_tag == "open_clip":
179
+ visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
180
+ elif visual_tag == "clip":
181
+ visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
182
+ else:
183
+ visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
184
+
185
+ # resize_clip_pos_embed for CLIP and open CLIP
186
+ if 'positional_embedding' in visual_state_dict:
187
+ resize_visual_pos_embed(visual_state_dict, model)
188
+ # specified to EVA model
189
+ elif 'pos_embed' in visual_state_dict:
190
+ resize_eva_pos_embed(visual_state_dict, model)
191
+
192
+ visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
193
+ logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
194
+ logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
195
+
196
+ if text_checkpoint_path:
197
+ if text_tag == "eva_clip" or text_tag == "open_clip":
198
+ text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
199
+ elif text_tag == "clip":
200
+ text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
201
+ else:
202
+ text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
203
+
204
+ text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
205
+
206
+ logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
207
+ logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
208
+
209
+ return visual_incompatible_keys, text_incompatible_keys
210
+
211
+ def create_model(
212
+ model_name: str,
213
+ pretrained: Optional[str] = None,
214
+ precision: str = 'fp32',
215
+ device: Union[str, torch.device] = 'cpu',
216
+ jit: bool = False,
217
+ force_quick_gelu: bool = False,
218
+ force_custom_clip: bool = False,
219
+ force_patch_dropout: Optional[float] = None,
220
+ pretrained_image: str = '',
221
+ pretrained_text: str = '',
222
+ pretrained_hf: bool = True,
223
+ pretrained_visual_model: str = None,
224
+ pretrained_text_model: str = None,
225
+ cache_dir: Optional[str] = None,
226
+ skip_list: list = [],
227
+ ):
228
+ model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
229
+ if isinstance(device, str):
230
+ device = torch.device(device)
231
+
232
+ if pretrained and pretrained.lower() == 'openai':
233
+ logging.info(f'Loading pretrained {model_name} from OpenAI.')
234
+ model = load_openai_model(
235
+ model_name,
236
+ precision=precision,
237
+ device=device,
238
+ jit=jit,
239
+ cache_dir=cache_dir,
240
+ )
241
+ else:
242
+ model_cfg = get_model_config(model_name)
243
+ if model_cfg is not None:
244
+ logging.info(f'Loaded {model_name} model config.')
245
+ else:
246
+ logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
247
+ raise RuntimeError(f'Model config for {model_name} not found.')
248
+
249
+ if 'rope' in model_cfg.get('vision_cfg', {}):
250
+ if model_cfg['vision_cfg']['rope']:
251
+ os.environ['RoPE'] = "1"
252
+ else:
253
+ os.environ['RoPE'] = "0"
254
+
255
+ if force_quick_gelu:
256
+ # override for use of QuickGELU on non-OpenAI transformer models
257
+ model_cfg["quick_gelu"] = True
258
+
259
+ if force_patch_dropout is not None:
260
+ # override the default patch dropout value
261
+ model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
262
+
263
+ cast_dtype = get_cast_dtype(precision)
264
+ custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
265
+
266
+ if custom_clip:
267
+ if 'hf_model_name' in model_cfg.get('text_cfg', {}):
268
+ model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
269
+ model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
270
+ else:
271
+ model = CLIP(**model_cfg, cast_dtype=cast_dtype)
272
+
273
+ pretrained_cfg = {}
274
+ if pretrained:
275
+ checkpoint_path = ''
276
+ pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
277
+ if pretrained_cfg:
278
+ checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
279
+ elif os.path.exists(pretrained):
280
+ checkpoint_path = pretrained
281
+
282
+ if checkpoint_path:
283
+ logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
284
+ load_checkpoint(model,
285
+ checkpoint_path,
286
+ model_key="model|module|state_dict",
287
+ strict=False
288
+ )
289
+ else:
290
+ error_str = (
291
+ f'Pretrained weights ({pretrained}) not found for model {model_name}.'
292
+ f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
293
+ logging.warning(error_str)
294
+ raise RuntimeError(error_str)
295
+ else:
296
+ visual_checkpoint_path = ''
297
+ text_checkpoint_path = ''
298
+
299
+ if pretrained_image:
300
+ pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
301
+ pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
302
+ if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
303
+ # pretrained weight loading for timm models set via vision_cfg
304
+ model_cfg['vision_cfg']['timm_model_pretrained'] = True
305
+ elif pretrained_image_cfg:
306
+ visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
307
+ elif os.path.exists(pretrained_image):
308
+ visual_checkpoint_path = pretrained_image
309
+ else:
310
+ logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
311
+ raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
312
+
313
+ if pretrained_text:
314
+ pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
315
+ pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
316
+ if pretrained_image_cfg:
317
+ text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
318
+ elif os.path.exists(pretrained_text):
319
+ text_checkpoint_path = pretrained_text
320
+ else:
321
+ logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
322
+ raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
323
+
324
+ if visual_checkpoint_path:
325
+ logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
326
+ if text_checkpoint_path:
327
+ logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
328
+
329
+ if visual_checkpoint_path or text_checkpoint_path:
330
+ load_pretrained_checkpoint(
331
+ model,
332
+ visual_checkpoint_path,
333
+ text_checkpoint_path,
334
+ strict=False,
335
+ visual_model=pretrained_visual_model,
336
+ text_model=pretrained_text_model,
337
+ model_key="model|module|state_dict",
338
+ skip_list=skip_list
339
+ )
340
+
341
+ if "fp16" in precision or "bf16" in precision:
342
+ logging.info(f'convert precision to {precision}')
343
+ model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
344
+
345
+ model.to(device=device)
346
+
347
+ # set image / mean metadata from pretrained_cfg if available, or use default
348
+ model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
349
+ model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
350
+
351
+ if jit:
352
+ model = torch.jit.script(model)
353
+
354
+ return model
355
+
356
+
357
+ def create_model_and_transforms(
358
+ model_name: str,
359
+ pretrained: Optional[str] = None,
360
+ precision: str = 'fp32',
361
+ device: Union[str, torch.device] = 'cpu',
362
+ jit: bool = False,
363
+ force_quick_gelu: bool = False,
364
+ force_custom_clip: bool = False,
365
+ force_patch_dropout: Optional[float] = None,
366
+ pretrained_image: str = '',
367
+ pretrained_text: str = '',
368
+ pretrained_hf: bool = True,
369
+ pretrained_visual_model: str = None,
370
+ pretrained_text_model: str = None,
371
+ image_mean: Optional[Tuple[float, ...]] = None,
372
+ image_std: Optional[Tuple[float, ...]] = None,
373
+ cache_dir: Optional[str] = None,
374
+ skip_list: list = [],
375
+ ):
376
+ model = create_model(
377
+ model_name,
378
+ pretrained,
379
+ precision=precision,
380
+ device=device,
381
+ jit=jit,
382
+ force_quick_gelu=force_quick_gelu,
383
+ force_custom_clip=force_custom_clip,
384
+ force_patch_dropout=force_patch_dropout,
385
+ pretrained_image=pretrained_image,
386
+ pretrained_text=pretrained_text,
387
+ pretrained_hf=pretrained_hf,
388
+ pretrained_visual_model=pretrained_visual_model,
389
+ pretrained_text_model=pretrained_text_model,
390
+ cache_dir=cache_dir,
391
+ skip_list=skip_list,
392
+ )
393
+
394
+ image_mean = image_mean or getattr(model.visual, 'image_mean', None)
395
+ image_std = image_std or getattr(model.visual, 'image_std', None)
396
+ preprocess_train = image_transform(
397
+ model.visual.image_size,
398
+ is_train=True,
399
+ mean=image_mean,
400
+ std=image_std
401
+ )
402
+ preprocess_val = image_transform(
403
+ model.visual.image_size,
404
+ is_train=False,
405
+ mean=image_mean,
406
+ std=image_std
407
+ )
408
+
409
+ return model, preprocess_train, preprocess_val
410
+
411
+ def create_model_from_pretrained(
412
+ model_name: str,
413
+ pretrained: str,
414
+ precision: str = 'fp32',
415
+ device: Union[str, torch.device] = 'cpu',
416
+ jit: bool = False,
417
+ force_quick_gelu: bool = False,
418
+ force_custom_clip: bool = False,
419
+ force_patch_dropout: Optional[float] = None,
420
+ return_transform: bool = True,
421
+ image_mean: Optional[Tuple[float, ...]] = None,
422
+ image_std: Optional[Tuple[float, ...]] = None,
423
+ cache_dir: Optional[str] = None,
424
+ is_frozen: bool = False,
425
+ ):
426
+ if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
427
+ raise RuntimeError(
428
+ f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
429
+ f' Use open_clip.list_pretrained() to find one.')
430
+
431
+ model = create_model(
432
+ model_name,
433
+ pretrained,
434
+ precision=precision,
435
+ device=device,
436
+ jit=jit,
437
+ force_quick_gelu=force_quick_gelu,
438
+ force_custom_clip=force_custom_clip,
439
+ force_patch_dropout=force_patch_dropout,
440
+ cache_dir=cache_dir,
441
+ )
442
+
443
+ if is_frozen:
444
+ for param in model.parameters():
445
+ param.requires_grad = False
446
+
447
+ if not return_transform:
448
+ return model
449
+
450
+ image_mean = image_mean or getattr(model.visual, 'image_mean', None)
451
+ image_std = image_std or getattr(model.visual, 'image_std', None)
452
+ preprocess = image_transform(
453
+ model.visual.image_size,
454
+ is_train=False,
455
+ mean=image_mean,
456
+ std=image_std
457
+ )
458
+
459
+ return model, preprocess
eva_clip/hf_configs.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # HF architecture dict:
2
+ arch_dict = {
3
+ # https://huggingface.co/docs/transformers/model_doc/roberta#roberta
4
+ "roberta": {
5
+ "config_names": {
6
+ "context_length": "max_position_embeddings",
7
+ "vocab_size": "vocab_size",
8
+ "width": "hidden_size",
9
+ "heads": "num_attention_heads",
10
+ "layers": "num_hidden_layers",
11
+ "layer_attr": "layer",
12
+ "token_embeddings_attr": "embeddings"
13
+ },
14
+ "pooler": "mean_pooler",
15
+ },
16
+ # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
17
+ "xlm-roberta": {
18
+ "config_names": {
19
+ "context_length": "max_position_embeddings",
20
+ "vocab_size": "vocab_size",
21
+ "width": "hidden_size",
22
+ "heads": "num_attention_heads",
23
+ "layers": "num_hidden_layers",
24
+ "layer_attr": "layer",
25
+ "token_embeddings_attr": "embeddings"
26
+ },
27
+ "pooler": "mean_pooler",
28
+ },
29
+ # https://huggingface.co/docs/transformers/model_doc/mt5#mt5
30
+ "mt5": {
31
+ "config_names": {
32
+ # unlimited seqlen
33
+ # https://github.com/google-research/text-to-text-transfer-transformer/issues/273
34
+ # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
35
+ "context_length": "",
36
+ "vocab_size": "vocab_size",
37
+ "width": "d_model",
38
+ "heads": "num_heads",
39
+ "layers": "num_layers",
40
+ "layer_attr": "block",
41
+ "token_embeddings_attr": "embed_tokens"
42
+ },
43
+ "pooler": "mean_pooler",
44
+ },
45
+ "bert": {
46
+ "config_names": {
47
+ "context_length": "max_position_embeddings",
48
+ "vocab_size": "vocab_size",
49
+ "width": "hidden_size",
50
+ "heads": "num_attention_heads",
51
+ "layers": "num_hidden_layers",
52
+ "layer_attr": "layer",
53
+ "token_embeddings_attr": "embeddings"
54
+ },
55
+ "pooler": "mean_pooler",
56
+ }
57
+ }
eva_clip/hf_model.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ huggingface model adapter
2
+
3
+ Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
4
+ """
5
+
6
+ import re
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.nn import functional as F
11
+ from torch import TensorType
12
+ try:
13
+ import transformers
14
+ from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig
15
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
16
+ BaseModelOutputWithPoolingAndCrossAttentions
17
+ except ImportError as e:
18
+ transformers = None
19
+
20
+
21
+ class BaseModelOutput:
22
+ pass
23
+
24
+
25
+ class PretrainedConfig:
26
+ pass
27
+
28
+ from .hf_configs import arch_dict
29
+
30
+ # utils
31
+ def _camel2snake(s):
32
+ return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
33
+
34
+ # TODO: ?last - for gpt-like models
35
+ _POOLERS = {}
36
+
37
+ def register_pooler(cls):
38
+ """Decorator registering pooler class"""
39
+ _POOLERS[_camel2snake(cls.__name__)] = cls
40
+ return cls
41
+
42
+
43
+ @register_pooler
44
+ class MeanPooler(nn.Module):
45
+ """Mean pooling"""
46
+ def forward(self, x:BaseModelOutput, attention_mask:TensorType):
47
+ masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
48
+ return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
49
+
50
+ @register_pooler
51
+ class MaxPooler(nn.Module):
52
+ """Max pooling"""
53
+ def forward(self, x:BaseModelOutput, attention_mask:TensorType):
54
+ masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
55
+ return masked_output.max(1).values
56
+
57
+ @register_pooler
58
+ class ClsPooler(nn.Module):
59
+ """CLS token pooling"""
60
+ def __init__(self, use_pooler_output=True):
61
+ super().__init__()
62
+ self.cls_token_position = 0
63
+ self.use_pooler_output = use_pooler_output
64
+
65
+ def forward(self, x:BaseModelOutput, attention_mask:TensorType):
66
+
67
+ if (self.use_pooler_output and
68
+ isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
69
+ (x.pooler_output is not None)
70
+ ):
71
+ return x.pooler_output
72
+
73
+ return x.last_hidden_state[:, self.cls_token_position, :]
74
+
75
+ class HFTextEncoder(nn.Module):
76
+ """HuggingFace model adapter"""
77
+ def __init__(
78
+ self,
79
+ model_name_or_path: str,
80
+ output_dim: int,
81
+ tokenizer_name: str = None,
82
+ config: PretrainedConfig = None,
83
+ pooler_type: str = None,
84
+ proj: str = None,
85
+ pretrained: bool = True,
86
+ masked_language_modeling: bool = False):
87
+ super().__init__()
88
+
89
+ self.output_dim = output_dim
90
+
91
+ # TODO: find better way to get this information
92
+ uses_transformer_pooler = (pooler_type == "cls_pooler")
93
+
94
+ if transformers is None:
95
+ raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
96
+ if config is None:
97
+ self.config = AutoConfig.from_pretrained(model_name_or_path)
98
+ if masked_language_modeling:
99
+ create_func, model_args = (AutoModelForMaskedLM.from_pretrained, model_name_or_path) if pretrained else (
100
+ AutoModelForMaskedLM.from_config, self.config)
101
+ else:
102
+ create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
103
+ AutoModel.from_config, self.config)
104
+ # TODO: do all model configs have this attribute? PretrainedConfig does so yes??
105
+ if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
106
+ self.transformer = create_func(model_args)
107
+ self.transformer = self.transformer.encoder
108
+ else:
109
+ self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
110
+ else:
111
+ self.config = config
112
+ if masked_language_modeling:
113
+ self.transformer = AutoModelForMaskedLM.from_config(config)
114
+ else:
115
+ self.transformer = AutoModel.from_config(config)
116
+
117
+ if pooler_type is None: # get default arch pooler
118
+ self.pooler = _POOLERS[(arch_dict[self.config.model_type]["pooler"])]()
119
+ else:
120
+ self.pooler = _POOLERS[pooler_type]()
121
+
122
+ d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
123
+ if (d_model == output_dim) and (proj is None): # do we always need a proj?
124
+ self.proj = nn.Identity()
125
+ elif proj == 'linear':
126
+ self.proj = nn.Linear(d_model, output_dim, bias=False)
127
+ elif proj == 'mlp':
128
+ hidden_size = (d_model + output_dim) // 2
129
+ self.proj = nn.Sequential(
130
+ nn.Linear(d_model, hidden_size, bias=False),
131
+ nn.GELU(),
132
+ nn.Linear(hidden_size, output_dim, bias=False),
133
+ )
134
+
135
+ # self.itm_proj = nn.Linear(d_model, 2, bias=False)
136
+ # self.mlm_proj = nn.Linear(d_model, self.config.vocab_size), bias=False)
137
+ self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
138
+
139
+ # def forward_itm(self, x:TensorType, image_embeds:TensorType) -> TensorType:
140
+ # image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device)
141
+ # attn_mask = (x != self.config.pad_token_id).long()
142
+ # out = self.transformer(
143
+ # input_ids=x,
144
+ # attention_mask=attn_mask,
145
+ # encoder_hidden_states = image_embeds,
146
+ # encoder_attention_mask = image_atts,
147
+ # )
148
+ # pooled_out = self.pooler(out, attn_mask)
149
+
150
+ # return self.itm_proj(pooled_out)
151
+
152
+ def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
153
+ if masked_indices is None:
154
+ masked_indices = torch.bernoulli(probability_matrix).bool()
155
+
156
+ masked_indices[input_ids == self.tokenizer.pad_token_id] = False
157
+ masked_indices[input_ids == self.tokenizer.cls_token_id] = False
158
+
159
+ if targets is not None:
160
+ targets[~masked_indices] = -100 # We only compute loss on masked tokens
161
+
162
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
163
+ indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
164
+ input_ids[indices_replaced] = self.tokenizer.mask_token_id
165
+
166
+ # 10% of the time, we replace masked input tokens with random word
167
+ indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
168
+ random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
169
+ input_ids[indices_random] = random_words[indices_random]
170
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
171
+
172
+ if targets is not None:
173
+ return input_ids, targets
174
+ else:
175
+ return input_ids
176
+
177
+ def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25):
178
+ labels = input_ids.clone()
179
+ attn_mask = (input_ids != self.config.pad_token_id).long()
180
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device)
181
+ vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"])
182
+ probability_matrix = torch.full(labels.shape, mlm_probability)
183
+ input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels,
184
+ probability_matrix = probability_matrix)
185
+ mlm_output = self.transformer(input_ids,
186
+ attention_mask = attn_mask,
187
+ encoder_hidden_states = image_embeds,
188
+ encoder_attention_mask = image_atts,
189
+ return_dict = True,
190
+ labels = labels,
191
+ )
192
+ return mlm_output.loss
193
+ # mlm_output = self.transformer(input_ids,
194
+ # attention_mask = attn_mask,
195
+ # encoder_hidden_states = image_embeds,
196
+ # encoder_attention_mask = image_atts,
197
+ # return_dict = True,
198
+ # ).last_hidden_state
199
+ # logits = self.mlm_proj(mlm_output)
200
+
201
+ # # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size)
202
+ # logits = logits[:, 1:, :].contiguous().view(-1, vocab_size)
203
+ # labels = labels[:, 1:].contiguous().view(-1)
204
+
205
+ # mlm_loss = F.cross_entropy(
206
+ # logits,
207
+ # labels,
208
+ # # label_smoothing=0.1,
209
+ # )
210
+ # return mlm_loss
211
+
212
+
213
+ def forward(self, x:TensorType) -> TensorType:
214
+ attn_mask = (x != self.config.pad_token_id).long()
215
+ out = self.transformer(input_ids=x, attention_mask=attn_mask)
216
+ pooled_out = self.pooler(out, attn_mask)
217
+
218
+ return self.proj(pooled_out)
219
+
220
+ def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
221
+ if not unlocked_layers: # full freezing
222
+ for n, p in self.transformer.named_parameters():
223
+ p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
224
+ return
225
+
226
+ encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
227
+ layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
228
+ print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
229
+ embeddings = getattr(
230
+ self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
231
+ modules = [embeddings, *layer_list][:-unlocked_layers]
232
+ # freeze layers
233
+ for module in modules:
234
+ for n, p in module.named_parameters():
235
+ p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
236
+
237
+
238
+ @torch.jit.ignore
239
+ def set_grad_checkpointing(self, enable=True):
240
+ self.transformer.gradient_checkpointing_enable()
241
+
242
+ def get_num_layers(self):
243
+ encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
244
+ layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
245
+ return len(layer_list)
246
+
247
+ def init_parameters(self):
248
+ pass
eva_clip/loss.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.nn import functional as F
5
+
6
+ try:
7
+ import torch.distributed.nn
8
+ from torch import distributed as dist
9
+ has_distributed = True
10
+ except ImportError:
11
+ has_distributed = False
12
+
13
+ try:
14
+ import horovod.torch as hvd
15
+ except ImportError:
16
+ hvd = None
17
+
18
+ from timm.loss import LabelSmoothingCrossEntropy
19
+
20
+
21
+ def gather_features(
22
+ image_features,
23
+ text_features,
24
+ local_loss=False,
25
+ gather_with_grad=False,
26
+ rank=0,
27
+ world_size=1,
28
+ use_horovod=False
29
+ ):
30
+ assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
31
+ if use_horovod:
32
+ assert hvd is not None, 'Please install horovod'
33
+ if gather_with_grad:
34
+ all_image_features = hvd.allgather(image_features)
35
+ all_text_features = hvd.allgather(text_features)
36
+ else:
37
+ with torch.no_grad():
38
+ all_image_features = hvd.allgather(image_features)
39
+ all_text_features = hvd.allgather(text_features)
40
+ if not local_loss:
41
+ # ensure grads for local rank when all_* features don't have a gradient
42
+ gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
43
+ gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
44
+ gathered_image_features[rank] = image_features
45
+ gathered_text_features[rank] = text_features
46
+ all_image_features = torch.cat(gathered_image_features, dim=0)
47
+ all_text_features = torch.cat(gathered_text_features, dim=0)
48
+ else:
49
+ # We gather tensors from all gpus
50
+ if gather_with_grad:
51
+ all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
52
+ all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
53
+ # all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0)
54
+ # all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0)
55
+ else:
56
+ gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
57
+ gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
58
+ dist.all_gather(gathered_image_features, image_features)
59
+ dist.all_gather(gathered_text_features, text_features)
60
+ if not local_loss:
61
+ # ensure grads for local rank when all_* features don't have a gradient
62
+ gathered_image_features[rank] = image_features
63
+ gathered_text_features[rank] = text_features
64
+ all_image_features = torch.cat(gathered_image_features, dim=0)
65
+ all_text_features = torch.cat(gathered_text_features, dim=0)
66
+
67
+ return all_image_features, all_text_features
68
+
69
+
70
+ class ClipLoss(nn.Module):
71
+
72
+ def __init__(
73
+ self,
74
+ local_loss=False,
75
+ gather_with_grad=False,
76
+ cache_labels=False,
77
+ rank=0,
78
+ world_size=1,
79
+ use_horovod=False,
80
+ smoothing=0.,
81
+ ):
82
+ super().__init__()
83
+ self.local_loss = local_loss
84
+ self.gather_with_grad = gather_with_grad
85
+ self.cache_labels = cache_labels
86
+ self.rank = rank
87
+ self.world_size = world_size
88
+ self.use_horovod = use_horovod
89
+ self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None
90
+
91
+ # cache state
92
+ self.prev_num_logits = 0
93
+ self.labels = {}
94
+
95
+ def forward(self, image_features, text_features, logit_scale=1.):
96
+ device = image_features.device
97
+ if self.world_size > 1:
98
+ all_image_features, all_text_features = gather_features(
99
+ image_features, text_features,
100
+ self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
101
+
102
+ if self.local_loss:
103
+ logits_per_image = logit_scale * image_features @ all_text_features.T
104
+ logits_per_text = logit_scale * text_features @ all_image_features.T
105
+ else:
106
+ logits_per_image = logit_scale * all_image_features @ all_text_features.T
107
+ logits_per_text = logits_per_image.T
108
+ else:
109
+ logits_per_image = logit_scale * image_features @ text_features.T
110
+ logits_per_text = logit_scale * text_features @ image_features.T
111
+ # calculated ground-truth and cache if enabled
112
+ num_logits = logits_per_image.shape[0]
113
+ if self.prev_num_logits != num_logits or device not in self.labels:
114
+ labels = torch.arange(num_logits, device=device, dtype=torch.long)
115
+ if self.world_size > 1 and self.local_loss:
116
+ labels = labels + num_logits * self.rank
117
+ if self.cache_labels:
118
+ self.labels[device] = labels
119
+ self.prev_num_logits = num_logits
120
+ else:
121
+ labels = self.labels[device]
122
+
123
+ if self.label_smoothing_cross_entropy:
124
+ total_loss = (
125
+ self.label_smoothing_cross_entropy(logits_per_image, labels) +
126
+ self.label_smoothing_cross_entropy(logits_per_text, labels)
127
+ ) / 2
128
+ else:
129
+ total_loss = (
130
+ F.cross_entropy(logits_per_image, labels) +
131
+ F.cross_entropy(logits_per_text, labels)
132
+ ) / 2
133
+
134
+ acc = None
135
+ i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image)
136
+ t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text)
137
+ acc = {"i2t": i2t_acc, "t2i": t2i_acc}
138
+ return total_loss, acc
eva_clip/model.py ADDED
@@ -0,0 +1,439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ CLIP Model
2
+
3
+ Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ """
5
+ import os
6
+ from dataclasses import dataclass
7
+ from typing import Optional, Tuple, Union
8
+ from functools import partial
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from torch import nn
14
+
15
+ try:
16
+ from .hf_model import HFTextEncoder
17
+ except:
18
+ HFTextEncoder = None
19
+ from .modified_resnet import ModifiedResNet
20
+ from .timm_model import TimmModel
21
+ from .eva_vit_model import EVAVisionTransformer
22
+ from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
23
+
24
+ try:
25
+ from apex.normalization import FusedLayerNorm
26
+ except:
27
+ FusedLayerNorm = LayerNorm
28
+ print("Please 'pip install apex'")
29
+
30
+ try:
31
+ import xformers.ops as xops
32
+ except ImportError:
33
+ xops = None
34
+ print("Please 'pip install xformers'")
35
+
36
+ @dataclass
37
+ class CLIPVisionCfg:
38
+ layers: Union[Tuple[int, int, int, int], int] = 12
39
+ width: int = 768
40
+ head_width: int = 64
41
+ mlp_ratio: float = 4.0
42
+ patch_size: int = 16
43
+ image_size: Union[Tuple[int, int], int] = 224
44
+ ls_init_value: Optional[float] = None # layer scale initial value
45
+ patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
46
+ global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
47
+ drop_path_rate: Optional[float] = None # drop path rate
48
+ timm_model_name: str = None # a valid model name overrides layers, width, patch_size
49
+ timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
50
+ timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
51
+ timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
52
+ timm_proj_bias: bool = False # enable bias final projection
53
+ eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
54
+ qkv_bias: bool = True
55
+ fusedLN: bool = False
56
+ xattn: bool = False
57
+ postnorm: bool = False
58
+ rope: bool = False
59
+ pt_hw_seq_len: int = 16 # 224/14
60
+ intp_freq: bool = False
61
+ naiveswiglu: bool = False
62
+ subln: bool = False
63
+
64
+
65
+ @dataclass
66
+ class CLIPTextCfg:
67
+ context_length: int = 77
68
+ vocab_size: int = 49408
69
+ width: int = 512
70
+ heads: int = 8
71
+ layers: int = 12
72
+ ls_init_value: Optional[float] = None # layer scale initial value
73
+ hf_model_name: str = None
74
+ hf_tokenizer_name: str = None
75
+ hf_model_pretrained: bool = True
76
+ proj: str = 'mlp'
77
+ pooler_type: str = 'mean_pooler'
78
+ masked_language_modeling: bool = False
79
+ fusedLN: bool = False
80
+ xattn: bool = False
81
+ attn_mask: bool = True
82
+
83
+ def get_cast_dtype(precision: str):
84
+ cast_dtype = None
85
+ if precision == 'bf16':
86
+ cast_dtype = torch.bfloat16
87
+ elif precision == 'fp16':
88
+ cast_dtype = torch.float16
89
+ return cast_dtype
90
+
91
+
92
+ def _build_vision_tower(
93
+ embed_dim: int,
94
+ vision_cfg: CLIPVisionCfg,
95
+ quick_gelu: bool = False,
96
+ cast_dtype: Optional[torch.dtype] = None
97
+ ):
98
+ if isinstance(vision_cfg, dict):
99
+ vision_cfg = CLIPVisionCfg(**vision_cfg)
100
+
101
+ # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
102
+ # memory efficient in recent PyTorch releases (>= 1.10).
103
+ # NOTE: timm models always use native GELU regardless of quick_gelu flag.
104
+ act_layer = QuickGELU if quick_gelu else nn.GELU
105
+
106
+ if vision_cfg.eva_model_name:
107
+ vision_heads = vision_cfg.width // vision_cfg.head_width
108
+ norm_layer = LayerNorm
109
+
110
+ visual = EVAVisionTransformer(
111
+ img_size=vision_cfg.image_size,
112
+ patch_size=vision_cfg.patch_size,
113
+ num_classes=embed_dim,
114
+ use_mean_pooling=vision_cfg.global_average_pool, #False
115
+ init_values=vision_cfg.ls_init_value,
116
+ patch_dropout=vision_cfg.patch_dropout,
117
+ embed_dim=vision_cfg.width,
118
+ depth=vision_cfg.layers,
119
+ num_heads=vision_heads,
120
+ mlp_ratio=vision_cfg.mlp_ratio,
121
+ qkv_bias=vision_cfg.qkv_bias,
122
+ drop_path_rate=vision_cfg.drop_path_rate,
123
+ norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
124
+ xattn=vision_cfg.xattn,
125
+ rope=vision_cfg.rope,
126
+ postnorm=vision_cfg.postnorm,
127
+ pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
128
+ intp_freq= vision_cfg.intp_freq,
129
+ naiveswiglu= vision_cfg.naiveswiglu,
130
+ subln= vision_cfg.subln
131
+ )
132
+ elif vision_cfg.timm_model_name:
133
+ visual = TimmModel(
134
+ vision_cfg.timm_model_name,
135
+ pretrained=vision_cfg.timm_model_pretrained,
136
+ pool=vision_cfg.timm_pool,
137
+ proj=vision_cfg.timm_proj,
138
+ proj_bias=vision_cfg.timm_proj_bias,
139
+ embed_dim=embed_dim,
140
+ image_size=vision_cfg.image_size
141
+ )
142
+ act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
143
+ elif isinstance(vision_cfg.layers, (tuple, list)):
144
+ vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
145
+ visual = ModifiedResNet(
146
+ layers=vision_cfg.layers,
147
+ output_dim=embed_dim,
148
+ heads=vision_heads,
149
+ image_size=vision_cfg.image_size,
150
+ width=vision_cfg.width
151
+ )
152
+ else:
153
+ vision_heads = vision_cfg.width // vision_cfg.head_width
154
+ norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
155
+ visual = VisionTransformer(
156
+ image_size=vision_cfg.image_size,
157
+ patch_size=vision_cfg.patch_size,
158
+ width=vision_cfg.width,
159
+ layers=vision_cfg.layers,
160
+ heads=vision_heads,
161
+ mlp_ratio=vision_cfg.mlp_ratio,
162
+ ls_init_value=vision_cfg.ls_init_value,
163
+ patch_dropout=vision_cfg.patch_dropout,
164
+ global_average_pool=vision_cfg.global_average_pool,
165
+ output_dim=embed_dim,
166
+ act_layer=act_layer,
167
+ norm_layer=norm_layer,
168
+ )
169
+
170
+ return visual
171
+
172
+
173
+ def _build_text_tower(
174
+ embed_dim: int,
175
+ text_cfg: CLIPTextCfg,
176
+ quick_gelu: bool = False,
177
+ cast_dtype: Optional[torch.dtype] = None,
178
+ ):
179
+ if isinstance(text_cfg, dict):
180
+ text_cfg = CLIPTextCfg(**text_cfg)
181
+
182
+ if text_cfg.hf_model_name:
183
+ text = HFTextEncoder(
184
+ text_cfg.hf_model_name,
185
+ output_dim=embed_dim,
186
+ tokenizer_name=text_cfg.hf_tokenizer_name,
187
+ proj=text_cfg.proj,
188
+ pooler_type=text_cfg.pooler_type,
189
+ masked_language_modeling=text_cfg.masked_language_modeling
190
+ )
191
+ else:
192
+ act_layer = QuickGELU if quick_gelu else nn.GELU
193
+ norm_layer = LayerNorm
194
+
195
+ text = TextTransformer(
196
+ context_length=text_cfg.context_length,
197
+ vocab_size=text_cfg.vocab_size,
198
+ width=text_cfg.width,
199
+ heads=text_cfg.heads,
200
+ layers=text_cfg.layers,
201
+ ls_init_value=text_cfg.ls_init_value,
202
+ output_dim=embed_dim,
203
+ act_layer=act_layer,
204
+ norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
205
+ xattn=text_cfg.xattn,
206
+ attn_mask=text_cfg.attn_mask,
207
+ )
208
+ return text
209
+
210
+ class CLIP(nn.Module):
211
+ def __init__(
212
+ self,
213
+ embed_dim: int,
214
+ vision_cfg: CLIPVisionCfg,
215
+ text_cfg: CLIPTextCfg,
216
+ quick_gelu: bool = False,
217
+ cast_dtype: Optional[torch.dtype] = None,
218
+ ):
219
+ super().__init__()
220
+ self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
221
+
222
+ text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
223
+ self.transformer = text.transformer
224
+ self.vocab_size = text.vocab_size
225
+ self.token_embedding = text.token_embedding
226
+ self.positional_embedding = text.positional_embedding
227
+ self.ln_final = text.ln_final
228
+ self.text_projection = text.text_projection
229
+ self.register_buffer('attn_mask', text.attn_mask, persistent=False)
230
+
231
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
232
+
233
+ def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
234
+ # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
235
+ self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
236
+
237
+ @torch.jit.ignore
238
+ def set_grad_checkpointing(self, enable=True):
239
+ self.visual.set_grad_checkpointing(enable)
240
+ self.transformer.grad_checkpointing = enable
241
+
242
+ @torch.jit.ignore
243
+ def no_weight_decay(self):
244
+ return {'logit_scale'}
245
+
246
+ def encode_image(self, image, normalize: bool = False):
247
+ features = self.visual(image)
248
+ return F.normalize(features, dim=-1) if normalize else features
249
+
250
+ def encode_text(self, text, normalize: bool = False):
251
+ cast_dtype = self.transformer.get_cast_dtype()
252
+
253
+ x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
254
+
255
+ x = x + self.positional_embedding.to(cast_dtype)
256
+ x = x.permute(1, 0, 2) # NLD -> LND
257
+ x = self.transformer(x, attn_mask=self.attn_mask)
258
+ x = x.permute(1, 0, 2) # LND -> NLD
259
+ x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
260
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
261
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
262
+ return F.normalize(x, dim=-1) if normalize else x
263
+
264
+ def forward(self, image, text):
265
+ image_features = self.encode_image(image, normalize=True)
266
+ text_features = self.encode_text(text, normalize=True)
267
+ return image_features, text_features, self.logit_scale.exp()
268
+
269
+
270
+ class CustomCLIP(nn.Module):
271
+ def __init__(
272
+ self,
273
+ embed_dim: int,
274
+ vision_cfg: CLIPVisionCfg,
275
+ text_cfg: CLIPTextCfg,
276
+ quick_gelu: bool = False,
277
+ cast_dtype: Optional[torch.dtype] = None,
278
+ itm_task: bool = False,
279
+ ):
280
+ super().__init__()
281
+ self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
282
+ self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
283
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
284
+
285
+ def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
286
+ # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
287
+ self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
288
+
289
+ def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
290
+ self.text.lock(unlocked_layers, freeze_layer_norm)
291
+
292
+ @torch.jit.ignore
293
+ def set_grad_checkpointing(self, enable=True):
294
+ self.visual.set_grad_checkpointing(enable)
295
+ self.text.set_grad_checkpointing(enable)
296
+
297
+ @torch.jit.ignore
298
+ def no_weight_decay(self):
299
+ return {'logit_scale'}
300
+
301
+ def encode_image(self, image, normalize: bool = False):
302
+ features = self.visual(image)
303
+ return F.normalize(features, dim=-1) if normalize else features
304
+
305
+ def encode_text(self, text, normalize: bool = False):
306
+ features = self.text(text)
307
+ return F.normalize(features, dim=-1) if normalize else features
308
+
309
+ def forward(self, image, text):
310
+ image_features = self.encode_image(image, normalize=True)
311
+ text_features = self.encode_text(text, normalize=True)
312
+ return image_features, text_features, self.logit_scale.exp()
313
+
314
+
315
+ def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
316
+ """Convert applicable model parameters to low-precision (bf16 or fp16)"""
317
+
318
+ def _convert_weights(l):
319
+
320
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
321
+ l.weight.data = l.weight.data.to(dtype)
322
+ if l.bias is not None:
323
+ l.bias.data = l.bias.data.to(dtype)
324
+
325
+ if isinstance(l, (nn.MultiheadAttention, Attention)):
326
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
327
+ tensor = getattr(l, attr, None)
328
+ if tensor is not None:
329
+ tensor.data = tensor.data.to(dtype)
330
+
331
+ if isinstance(l, nn.Parameter):
332
+ l.data = l.data.to(dtype)
333
+
334
+ for name in ["text_projection", "proj"]:
335
+ if hasattr(l, name) and isinstance(l, nn.Parameter):
336
+ attr = getattr(l, name, None)
337
+ if attr is not None:
338
+ attr.data = attr.data.to(dtype)
339
+
340
+ model.apply(_convert_weights)
341
+
342
+
343
+ convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
344
+
345
+
346
+ # used to maintain checkpoint compatibility
347
+ def convert_to_custom_text_state_dict(state_dict: dict):
348
+ if 'text_projection' in state_dict:
349
+ # old format state_dict, move text tower -> .text
350
+ new_state_dict = {}
351
+ for k, v in state_dict.items():
352
+ if any(k.startswith(p) for p in (
353
+ 'text_projection',
354
+ 'positional_embedding',
355
+ 'token_embedding',
356
+ 'transformer',
357
+ 'ln_final',
358
+ 'logit_scale'
359
+ )):
360
+ k = 'text.' + k
361
+ new_state_dict[k] = v
362
+ return new_state_dict
363
+ return state_dict
364
+
365
+
366
+ def build_model_from_openai_state_dict(
367
+ state_dict: dict,
368
+ quick_gelu=True,
369
+ cast_dtype=torch.float16,
370
+ ):
371
+ vit = "visual.proj" in state_dict
372
+
373
+ if vit:
374
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
375
+ vision_layers = len(
376
+ [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
377
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
378
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
379
+ image_size = vision_patch_size * grid_size
380
+ else:
381
+ counts: list = [
382
+ len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
383
+ vision_layers = tuple(counts)
384
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
385
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
386
+ vision_patch_size = None
387
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
388
+ image_size = output_width * 32
389
+
390
+ embed_dim = state_dict["text_projection"].shape[1]
391
+ context_length = state_dict["positional_embedding"].shape[0]
392
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
393
+ transformer_width = state_dict["ln_final.weight"].shape[0]
394
+ transformer_heads = transformer_width // 64
395
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
396
+
397
+ vision_cfg = CLIPVisionCfg(
398
+ layers=vision_layers,
399
+ width=vision_width,
400
+ patch_size=vision_patch_size,
401
+ image_size=image_size,
402
+ )
403
+ text_cfg = CLIPTextCfg(
404
+ context_length=context_length,
405
+ vocab_size=vocab_size,
406
+ width=transformer_width,
407
+ heads=transformer_heads,
408
+ layers=transformer_layers
409
+ )
410
+ model = CLIP(
411
+ embed_dim,
412
+ vision_cfg=vision_cfg,
413
+ text_cfg=text_cfg,
414
+ quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
415
+ cast_dtype=cast_dtype,
416
+ )
417
+
418
+ for key in ["input_resolution", "context_length", "vocab_size"]:
419
+ state_dict.pop(key, None)
420
+
421
+ convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
422
+ model.load_state_dict(state_dict)
423
+ return model.eval()
424
+
425
+
426
+ def trace_model(model, batch_size=256, device=torch.device('cpu')):
427
+ model.eval()
428
+ image_size = model.visual.image_size
429
+ example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
430
+ example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
431
+ model = torch.jit.trace_module(
432
+ model,
433
+ inputs=dict(
434
+ forward=(example_images, example_text),
435
+ encode_text=(example_text,),
436
+ encode_image=(example_images,)
437
+ ))
438
+ model.visual.image_size = image_size
439
+ return model
eva_clip/model_configs/EVA01-CLIP-B-16.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "patch_size": 16,
8
+ "eva_model_name": "eva-clip-b-16",
9
+ "ls_init_value": 0.1,
10
+ "drop_path_rate": 0.0
11
+ },
12
+ "text_cfg": {
13
+ "context_length": 77,
14
+ "vocab_size": 49408,
15
+ "width": 512,
16
+ "heads": 8,
17
+ "layers": 12
18
+ }
19
+ }
eva_clip/model_configs/EVA01-CLIP-g-14-plus.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 40,
6
+ "width": 1408,
7
+ "head_width": 88,
8
+ "mlp_ratio": 4.3637,
9
+ "patch_size": 14,
10
+ "eva_model_name": "eva-clip-g-14-x",
11
+ "drop_path_rate": 0,
12
+ "xattn": true,
13
+ "fusedLN": true
14
+ },
15
+ "text_cfg": {
16
+ "context_length": 77,
17
+ "vocab_size": 49408,
18
+ "width": 1024,
19
+ "heads": 16,
20
+ "layers": 24,
21
+ "xattn": false,
22
+ "fusedLN": true
23
+ }
24
+ }
eva_clip/model_configs/EVA01-CLIP-g-14.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 40,
6
+ "width": 1408,
7
+ "head_width": 88,
8
+ "mlp_ratio": 4.3637,
9
+ "patch_size": 14,
10
+ "eva_model_name": "eva-clip-g-14-x",
11
+ "drop_path_rate": 0.4,
12
+ "xattn": true,
13
+ "fusedLN": true
14
+ },
15
+ "text_cfg": {
16
+ "context_length": 77,
17
+ "vocab_size": 49408,
18
+ "width": 768,
19
+ "heads": 12,
20
+ "layers": 12,
21
+ "xattn": false,
22
+ "fusedLN": true
23
+ }
24
+ }
eva_clip/model_configs/EVA02-CLIP-B-16.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "head_width": 64,
8
+ "patch_size": 16,
9
+ "mlp_ratio": 2.6667,
10
+ "eva_model_name": "eva-clip-b-16-X",
11
+ "drop_path_rate": 0.0,
12
+ "xattn": true,
13
+ "fusedLN": true,
14
+ "rope": true,
15
+ "pt_hw_seq_len": 16,
16
+ "intp_freq": true,
17
+ "naiveswiglu": true,
18
+ "subln": true
19
+ },
20
+ "text_cfg": {
21
+ "context_length": 77,
22
+ "vocab_size": 49408,
23
+ "width": 512,
24
+ "heads": 8,
25
+ "layers": 12,
26
+ "xattn": true,
27
+ "fusedLN": true
28
+ }
29
+ }
eva_clip/model_configs/EVA02-CLIP-L-14-336.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 336,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "drop_path_rate": 0,
8
+ "head_width": 64,
9
+ "mlp_ratio": 2.6667,
10
+ "patch_size": 14,
11
+ "eva_model_name": "eva-clip-l-14-336",
12
+ "xattn": true,
13
+ "fusedLN": true,
14
+ "rope": true,
15
+ "pt_hw_seq_len": 16,
16
+ "intp_freq": true,
17
+ "naiveswiglu": true,
18
+ "subln": true
19
+ },
20
+ "text_cfg": {
21
+ "context_length": 77,
22
+ "vocab_size": 49408,
23
+ "width": 768,
24
+ "heads": 12,
25
+ "layers": 12,
26
+ "xattn": false,
27
+ "fusedLN": true
28
+ }
29
+ }
eva_clip/model_configs/EVA02-CLIP-L-14-448.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 448,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "drop_path_rate": 0,
8
+ "head_width": 64,
9
+ "mlp_ratio": 2.6667,
10
+ "patch_size": 14,
11
+ "eva_model_name": "eva-clip-l-14-448",
12
+ "xattn": true,
13
+ "fusedLN": true,
14
+ "rope": true,
15
+ "pt_hw_seq_len": 16,
16
+ "intp_freq": true,
17
+ "naiveswiglu": true,
18
+ "subln": true
19
+ },
20
+ "text_cfg": {
21
+ "context_length": 77,
22
+ "vocab_size": 49408,
23
+ "width": 768,
24
+ "heads": 12,
25
+ "layers": 12,
26
+ "xattn": false,
27
+ "fusedLN": true
28
+ }
29
+ }
eva_clip/model_configs/EVA02-CLIP-L-14.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "drop_path_rate": 0,
8
+ "head_width": 64,
9
+ "mlp_ratio": 2.6667,
10
+ "patch_size": 14,
11
+ "eva_model_name": "eva-clip-l-14",
12
+ "xattn": true,
13
+ "fusedLN": true,
14
+ "rope": true,
15
+ "pt_hw_seq_len": 16,
16
+ "intp_freq": true,
17
+ "naiveswiglu": true,
18
+ "subln": true
19
+ },
20
+ "text_cfg": {
21
+ "context_length": 77,
22
+ "vocab_size": 49408,
23
+ "width": 768,
24
+ "heads": 12,
25
+ "layers": 12,
26
+ "xattn": false,
27
+ "fusedLN": true
28
+ }
29
+ }
eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 64,
6
+ "width": 1792,
7
+ "head_width": 112,
8
+ "mlp_ratio": 8.571428571428571,
9
+ "patch_size": 14,
10
+ "eva_model_name": "eva-clip-4b-14-x",
11
+ "drop_path_rate": 0,
12
+ "xattn": true,
13
+ "postnorm": true,
14
+ "fusedLN": true
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 1280,
20
+ "heads": 20,
21
+ "layers": 32,
22
+ "xattn": false,
23
+ "fusedLN": true
24
+ }
25
+ }
eva_clip/model_configs/EVA02-CLIP-bigE-14.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 64,
6
+ "width": 1792,
7
+ "head_width": 112,
8
+ "mlp_ratio": 8.571428571428571,
9
+ "patch_size": 14,
10
+ "eva_model_name": "eva-clip-4b-14-x",
11
+ "drop_path_rate": 0,
12
+ "xattn": true,
13
+ "postnorm": true,
14
+ "fusedLN": true
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 1024,
20
+ "heads": 16,
21
+ "layers": 24,
22
+ "xattn": false,
23
+ "fusedLN": true
24
+ }
25
+ }
eva_clip/modified_resnet.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ from .utils import freeze_batch_norm_2d
8
+
9
+
10
+ class Bottleneck(nn.Module):
11
+ expansion = 4
12
+
13
+ def __init__(self, inplanes, planes, stride=1):
14
+ super().__init__()
15
+
16
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18
+ self.bn1 = nn.BatchNorm2d(planes)
19
+ self.act1 = nn.ReLU(inplace=True)
20
+
21
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22
+ self.bn2 = nn.BatchNorm2d(planes)
23
+ self.act2 = nn.ReLU(inplace=True)
24
+
25
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26
+
27
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29
+ self.act3 = nn.ReLU(inplace=True)
30
+
31
+ self.downsample = None
32
+ self.stride = stride
33
+
34
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
35
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36
+ self.downsample = nn.Sequential(OrderedDict([
37
+ ("-1", nn.AvgPool2d(stride)),
38
+ ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39
+ ("1", nn.BatchNorm2d(planes * self.expansion))
40
+ ]))
41
+
42
+ def forward(self, x: torch.Tensor):
43
+ identity = x
44
+
45
+ out = self.act1(self.bn1(self.conv1(x)))
46
+ out = self.act2(self.bn2(self.conv2(out)))
47
+ out = self.avgpool(out)
48
+ out = self.bn3(self.conv3(out))
49
+
50
+ if self.downsample is not None:
51
+ identity = self.downsample(x)
52
+
53
+ out += identity
54
+ out = self.act3(out)
55
+ return out
56
+
57
+
58
+ class AttentionPool2d(nn.Module):
59
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60
+ super().__init__()
61
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
63
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
64
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
65
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66
+ self.num_heads = num_heads
67
+
68
+ def forward(self, x):
69
+ x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
70
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72
+ x, _ = F.multi_head_attention_forward(
73
+ query=x, key=x, value=x,
74
+ embed_dim_to_check=x.shape[-1],
75
+ num_heads=self.num_heads,
76
+ q_proj_weight=self.q_proj.weight,
77
+ k_proj_weight=self.k_proj.weight,
78
+ v_proj_weight=self.v_proj.weight,
79
+ in_proj_weight=None,
80
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81
+ bias_k=None,
82
+ bias_v=None,
83
+ add_zero_attn=False,
84
+ dropout_p=0.,
85
+ out_proj_weight=self.c_proj.weight,
86
+ out_proj_bias=self.c_proj.bias,
87
+ use_separate_proj_weight=True,
88
+ training=self.training,
89
+ need_weights=False
90
+ )
91
+
92
+ return x[0]
93
+
94
+
95
+ class ModifiedResNet(nn.Module):
96
+ """
97
+ A ResNet class that is similar to torchvision's but contains the following changes:
98
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
99
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
100
+ - The final pooling layer is a QKV attention instead of an average pool
101
+ """
102
+
103
+ def __init__(self, layers, output_dim, heads, image_size=224, width=64):
104
+ super().__init__()
105
+ self.output_dim = output_dim
106
+ self.image_size = image_size
107
+
108
+ # the 3-layer stem
109
+ self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
110
+ self.bn1 = nn.BatchNorm2d(width // 2)
111
+ self.act1 = nn.ReLU(inplace=True)
112
+ self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
113
+ self.bn2 = nn.BatchNorm2d(width // 2)
114
+ self.act2 = nn.ReLU(inplace=True)
115
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
116
+ self.bn3 = nn.BatchNorm2d(width)
117
+ self.act3 = nn.ReLU(inplace=True)
118
+ self.avgpool = nn.AvgPool2d(2)
119
+
120
+ # residual layers
121
+ self._inplanes = width # this is a *mutable* variable used during construction
122
+ self.layer1 = self._make_layer(width, layers[0])
123
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
124
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
125
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
126
+
127
+ embed_dim = width * 32 # the ResNet feature dimension
128
+ self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
129
+
130
+ self.init_parameters()
131
+
132
+ def _make_layer(self, planes, blocks, stride=1):
133
+ layers = [Bottleneck(self._inplanes, planes, stride)]
134
+
135
+ self._inplanes = planes * Bottleneck.expansion
136
+ for _ in range(1, blocks):
137
+ layers.append(Bottleneck(self._inplanes, planes))
138
+
139
+ return nn.Sequential(*layers)
140
+
141
+ def init_parameters(self):
142
+ if self.attnpool is not None:
143
+ std = self.attnpool.c_proj.in_features ** -0.5
144
+ nn.init.normal_(self.attnpool.q_proj.weight, std=std)
145
+ nn.init.normal_(self.attnpool.k_proj.weight, std=std)
146
+ nn.init.normal_(self.attnpool.v_proj.weight, std=std)
147
+ nn.init.normal_(self.attnpool.c_proj.weight, std=std)
148
+
149
+ for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
150
+ for name, param in resnet_block.named_parameters():
151
+ if name.endswith("bn3.weight"):
152
+ nn.init.zeros_(param)
153
+
154
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
155
+ assert unlocked_groups == 0, 'partial locking not currently supported for this model'
156
+ for param in self.parameters():
157
+ param.requires_grad = False
158
+ if freeze_bn_stats:
159
+ freeze_batch_norm_2d(self)
160
+
161
+ @torch.jit.ignore
162
+ def set_grad_checkpointing(self, enable=True):
163
+ # FIXME support for non-transformer
164
+ pass
165
+
166
+ def stem(self, x):
167
+ x = self.act1(self.bn1(self.conv1(x)))
168
+ x = self.act2(self.bn2(self.conv2(x)))
169
+ x = self.act3(self.bn3(self.conv3(x)))
170
+ x = self.avgpool(x)
171
+ return x
172
+
173
+ def forward(self, x):
174
+ x = self.stem(x)
175
+ x = self.layer1(x)
176
+ x = self.layer2(x)
177
+ x = self.layer3(x)
178
+ x = self.layer4(x)
179
+ x = self.attnpool(x)
180
+
181
+ return x
eva_clip/openai.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ OpenAI pretrained model functions
2
+
3
+ Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ """
5
+
6
+ import os
7
+ import warnings
8
+ from typing import List, Optional, Union
9
+
10
+ import torch
11
+
12
+ from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
13
+ from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
14
+
15
+ __all__ = ["list_openai_models", "load_openai_model"]
16
+
17
+
18
+ def list_openai_models() -> List[str]:
19
+ """Returns the names of available CLIP models"""
20
+ return list_pretrained_models_by_tag('openai')
21
+
22
+
23
+ def load_openai_model(
24
+ name: str,
25
+ precision: Optional[str] = None,
26
+ device: Optional[Union[str, torch.device]] = None,
27
+ jit: bool = True,
28
+ cache_dir: Optional[str] = None,
29
+ ):
30
+ """Load a CLIP model
31
+
32
+ Parameters
33
+ ----------
34
+ name : str
35
+ A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
36
+ precision: str
37
+ Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
38
+ device : Union[str, torch.device]
39
+ The device to put the loaded model
40
+ jit : bool
41
+ Whether to load the optimized JIT model (default) or more hackable non-JIT model.
42
+ cache_dir : Optional[str]
43
+ The directory to cache the downloaded model weights
44
+
45
+ Returns
46
+ -------
47
+ model : torch.nn.Module
48
+ The CLIP model
49
+ preprocess : Callable[[PIL.Image], torch.Tensor]
50
+ A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
51
+ """
52
+ if device is None:
53
+ device = "cuda" if torch.cuda.is_available() else "cpu"
54
+ if precision is None:
55
+ precision = 'fp32' if device == 'cpu' else 'fp16'
56
+
57
+ if get_pretrained_url(name, 'openai'):
58
+ model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
59
+ elif os.path.isfile(name):
60
+ model_path = name
61
+ else:
62
+ raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
63
+
64
+ try:
65
+ # loading JIT archive
66
+ model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
67
+ state_dict = None
68
+ except RuntimeError:
69
+ # loading saved state dict
70
+ if jit:
71
+ warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
72
+ jit = False
73
+ state_dict = torch.load(model_path, map_location="cpu")
74
+
75
+ if not jit:
76
+ # Build a non-jit model from the OpenAI jitted model state dict
77
+ cast_dtype = get_cast_dtype(precision)
78
+ try:
79
+ model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
80
+ except KeyError:
81
+ sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
82
+ model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
83
+
84
+ # model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
85
+ model = model.to(device)
86
+ if precision.startswith('amp') or precision == 'fp32':
87
+ model.float()
88
+ elif precision == 'bf16':
89
+ convert_weights_to_lp(model, dtype=torch.bfloat16)
90
+
91
+ return model
92
+
93
+ # patch the device names
94
+ device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
95
+ device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
96
+
97
+ def patch_device(module):
98
+ try:
99
+ graphs = [module.graph] if hasattr(module, "graph") else []
100
+ except RuntimeError:
101
+ graphs = []
102
+
103
+ if hasattr(module, "forward1"):
104
+ graphs.append(module.forward1.graph)
105
+
106
+ for graph in graphs:
107
+ for node in graph.findAllNodes("prim::Constant"):
108
+ if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
109
+ node.copyAttributes(device_node)
110
+
111
+ model.apply(patch_device)
112
+ patch_device(model.encode_image)
113
+ patch_device(model.encode_text)
114
+
115
+ # patch dtype to float32 (typically for CPU)
116
+ if precision == 'fp32':
117
+ float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
118
+ float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
119
+ float_node = float_input.node()
120
+
121
+ def patch_float(module):
122
+ try:
123
+ graphs = [module.graph] if hasattr(module, "graph") else []
124
+ except RuntimeError:
125
+ graphs = []
126
+
127
+ if hasattr(module, "forward1"):
128
+ graphs.append(module.forward1.graph)
129
+
130
+ for graph in graphs:
131
+ for node in graph.findAllNodes("aten::to"):
132
+ inputs = list(node.inputs())
133
+ for i in [1, 2]: # dtype can be the second or third argument to aten::to()
134
+ if inputs[i].node()["value"] == 5:
135
+ inputs[i].node().copyAttributes(float_node)
136
+
137
+ model.apply(patch_float)
138
+ patch_float(model.encode_image)
139
+ patch_float(model.encode_text)
140
+ model.float()
141
+
142
+ # ensure image_size attr available at consistent location for both jit and non-jit
143
+ model.visual.image_size = model.input_resolution.item()
144
+ return model
eva_clip/pretrained.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import os
3
+ import urllib
4
+ import warnings
5
+ from functools import partial
6
+ from typing import Dict, Union
7
+
8
+ from tqdm import tqdm
9
+
10
+ try:
11
+ from huggingface_hub import hf_hub_download
12
+ _has_hf_hub = True
13
+ except ImportError:
14
+ hf_hub_download = None
15
+ _has_hf_hub = False
16
+
17
+
18
+ def _pcfg(url='', hf_hub='', filename='', mean=None, std=None):
19
+ return dict(
20
+ url=url,
21
+ hf_hub=hf_hub,
22
+ mean=mean,
23
+ std=std,
24
+ )
25
+
26
+ _VITB32 = dict(
27
+ openai=_pcfg(
28
+ "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
29
+ laion400m_e31=_pcfg(
30
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
31
+ laion400m_e32=_pcfg(
32
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
33
+ laion2b_e16=_pcfg(
34
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
35
+ laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
36
+ )
37
+
38
+ _VITB32_quickgelu = dict(
39
+ openai=_pcfg(
40
+ "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
41
+ laion400m_e31=_pcfg(
42
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
43
+ laion400m_e32=_pcfg(
44
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
45
+ )
46
+
47
+ _VITB16 = dict(
48
+ openai=_pcfg(
49
+ "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
50
+ laion400m_e31=_pcfg(
51
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
52
+ laion400m_e32=_pcfg(
53
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
54
+ laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
55
+ )
56
+
57
+ _EVAB16 = dict(
58
+ eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
59
+ eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
60
+ eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
61
+ eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
62
+ )
63
+
64
+ _VITB16_PLUS_240 = dict(
65
+ laion400m_e31=_pcfg(
66
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
67
+ laion400m_e32=_pcfg(
68
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
69
+ )
70
+
71
+ _VITL14 = dict(
72
+ openai=_pcfg(
73
+ "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
74
+ laion400m_e31=_pcfg(
75
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
76
+ laion400m_e32=_pcfg(
77
+ "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
78
+ laion2b_s32b_b82k=_pcfg(
79
+ hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
80
+ mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
81
+ )
82
+
83
+ _EVAL14 = dict(
84
+ eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
85
+ eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
86
+ eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
87
+ eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
88
+ )
89
+
90
+ _VITL14_336 = dict(
91
+ openai=_pcfg(
92
+ "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
93
+ )
94
+
95
+ _EVAL14_336 = dict(
96
+ eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
97
+ eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
98
+ eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
99
+ eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
100
+ )
101
+
102
+ _VITH14 = dict(
103
+ laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
104
+ )
105
+
106
+ _VITg14 = dict(
107
+ laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
108
+ laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
109
+ )
110
+
111
+ _EVAg14 = dict(
112
+ eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
113
+ eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
114
+ eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
115
+ eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
116
+ )
117
+
118
+ _EVAg14_PLUS = dict(
119
+ eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
120
+ eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
121
+ eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
122
+ eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
123
+ )
124
+
125
+ _VITbigG14 = dict(
126
+ laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
127
+ )
128
+
129
+ _EVAbigE14 = dict(
130
+ eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
131
+ eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
132
+ eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
133
+ eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
134
+ )
135
+
136
+ _EVAbigE14_PLUS = dict(
137
+ eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
138
+ eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
139
+ eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
140
+ eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
141
+ )
142
+
143
+
144
+ _PRETRAINED = {
145
+ # "ViT-B-32": _VITB32,
146
+ "OpenaiCLIP-B-32": _VITB32,
147
+ "OpenCLIP-B-32": _VITB32,
148
+
149
+ # "ViT-B-32-quickgelu": _VITB32_quickgelu,
150
+ "OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
151
+ "OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
152
+
153
+ # "ViT-B-16": _VITB16,
154
+ "OpenaiCLIP-B-16": _VITB16,
155
+ "OpenCLIP-B-16": _VITB16,
156
+
157
+ "EVA02-B-16": _EVAB16,
158
+ "EVA02-CLIP-B-16": _EVAB16,
159
+
160
+ # "ViT-B-16-plus-240": _VITB16_PLUS_240,
161
+ "OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
162
+
163
+ # "ViT-L-14": _VITL14,
164
+ "OpenaiCLIP-L-14": _VITL14,
165
+ "OpenCLIP-L-14": _VITL14,
166
+
167
+ "EVA02-L-14": _EVAL14,
168
+ "EVA02-CLIP-L-14": _EVAL14,
169
+
170
+ # "ViT-L-14-336": _VITL14_336,
171
+ "OpenaiCLIP-L-14-336": _VITL14_336,
172
+
173
+ "EVA02-CLIP-L-14-336": _EVAL14_336,
174
+
175
+ # "ViT-H-14": _VITH14,
176
+ # "ViT-g-14": _VITg14,
177
+ "OpenCLIP-H-14": _VITH14,
178
+ "OpenCLIP-g-14": _VITg14,
179
+
180
+ "EVA01-CLIP-g-14": _EVAg14,
181
+ "EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
182
+
183
+ # "ViT-bigG-14": _VITbigG14,
184
+ "OpenCLIP-bigG-14": _VITbigG14,
185
+
186
+ "EVA02-CLIP-bigE-14": _EVAbigE14,
187
+ "EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
188
+ }
189
+
190
+
191
+ def _clean_tag(tag: str):
192
+ # normalize pretrained tags
193
+ return tag.lower().replace('-', '_')
194
+
195
+
196
+ def list_pretrained(as_str: bool = False):
197
+ """ returns list of pretrained models
198
+ Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
199
+ """
200
+ return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
201
+
202
+
203
+ def list_pretrained_models_by_tag(tag: str):
204
+ """ return all models having the specified pretrain tag """
205
+ models = []
206
+ tag = _clean_tag(tag)
207
+ for k in _PRETRAINED.keys():
208
+ if tag in _PRETRAINED[k]:
209
+ models.append(k)
210
+ return models
211
+
212
+
213
+ def list_pretrained_tags_by_model(model: str):
214
+ """ return all pretrain tags for the specified model architecture """
215
+ tags = []
216
+ if model in _PRETRAINED:
217
+ tags.extend(_PRETRAINED[model].keys())
218
+ return tags
219
+
220
+
221
+ def is_pretrained_cfg(model: str, tag: str):
222
+ if model not in _PRETRAINED:
223
+ return False
224
+ return _clean_tag(tag) in _PRETRAINED[model]
225
+
226
+
227
+ def get_pretrained_cfg(model: str, tag: str):
228
+ if model not in _PRETRAINED:
229
+ return {}
230
+ model_pretrained = _PRETRAINED[model]
231
+ return model_pretrained.get(_clean_tag(tag), {})
232
+
233
+
234
+ def get_pretrained_url(model: str, tag: str):
235
+ cfg = get_pretrained_cfg(model, _clean_tag(tag))
236
+ return cfg.get('url', '')
237
+
238
+
239
+ def download_pretrained_from_url(
240
+ url: str,
241
+ cache_dir: Union[str, None] = None,
242
+ ):
243
+ if not cache_dir:
244
+ cache_dir = os.path.expanduser("~/.cache/clip")
245
+ os.makedirs(cache_dir, exist_ok=True)
246
+ filename = os.path.basename(url)
247
+
248
+ if 'openaipublic' in url:
249
+ expected_sha256 = url.split("/")[-2]
250
+ elif 'mlfoundations' in url:
251
+ expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
252
+ else:
253
+ expected_sha256 = ''
254
+
255
+ download_target = os.path.join(cache_dir, filename)
256
+
257
+ if os.path.exists(download_target) and not os.path.isfile(download_target):
258
+ raise RuntimeError(f"{download_target} exists and is not a regular file")
259
+
260
+ if os.path.isfile(download_target):
261
+ if expected_sha256:
262
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
263
+ return download_target
264
+ else:
265
+ warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
266
+ else:
267
+ return download_target
268
+
269
+ with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
270
+ with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
271
+ while True:
272
+ buffer = source.read(8192)
273
+ if not buffer:
274
+ break
275
+
276
+ output.write(buffer)
277
+ loop.update(len(buffer))
278
+
279
+ if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
280
+ raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
281
+
282
+ return download_target
283
+
284
+
285
+ def has_hf_hub(necessary=False):
286
+ if not _has_hf_hub and necessary:
287
+ # if no HF Hub module installed, and it is necessary to continue, raise error
288
+ raise RuntimeError(
289
+ 'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
290
+ return _has_hf_hub
291
+
292
+
293
+ def download_pretrained_from_hf(
294
+ model_id: str,
295
+ filename: str = 'open_clip_pytorch_model.bin',
296
+ revision=None,
297
+ cache_dir: Union[str, None] = None,
298
+ ):
299
+ has_hf_hub(True)
300
+ cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
301
+ return cached_file
302
+
303
+
304
+ def download_pretrained(
305
+ cfg: Dict,
306
+ force_hf_hub: bool = False,
307
+ cache_dir: Union[str, None] = None,
308
+ ):
309
+ target = ''
310
+ if not cfg:
311
+ return target
312
+
313
+ download_url = cfg.get('url', '')
314
+ download_hf_hub = cfg.get('hf_hub', '')
315
+ if download_hf_hub and force_hf_hub:
316
+ # use HF hub even if url exists
317
+ download_url = ''
318
+
319
+ if download_url:
320
+ target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
321
+ elif download_hf_hub:
322
+ has_hf_hub(True)
323
+ # we assume the hf_hub entries in pretrained config combine model_id + filename in
324
+ # 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
325
+ # use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
326
+ model_id, filename = os.path.split(download_hf_hub)
327
+ if filename:
328
+ target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
329
+ else:
330
+ target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
331
+
332
+ return target
eva_clip/rope.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import pi
2
+ import torch
3
+ from torch import nn
4
+ from einops import rearrange, repeat
5
+ import logging
6
+
7
+ def broadcat(tensors, dim = -1):
8
+ num_tensors = len(tensors)
9
+ shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
10
+ assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
11
+ shape_len = list(shape_lens)[0]
12
+ dim = (dim + shape_len) if dim < 0 else dim
13
+ dims = list(zip(*map(lambda t: list(t.shape), tensors)))
14
+ expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
15
+ assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
16
+ max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
17
+ expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
18
+ expanded_dims.insert(dim, (dim, dims[dim]))
19
+ expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
20
+ tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
21
+ return torch.cat(tensors, dim = dim)
22
+
23
+ def rotate_half(x):
24
+ x = rearrange(x, '... (d r) -> ... d r', r = 2)
25
+ x1, x2 = x.unbind(dim = -1)
26
+ x = torch.stack((-x2, x1), dim = -1)
27
+ return rearrange(x, '... d r -> ... (d r)')
28
+
29
+
30
+ class VisionRotaryEmbedding(nn.Module):
31
+ def __init__(
32
+ self,
33
+ dim,
34
+ pt_seq_len,
35
+ ft_seq_len=None,
36
+ custom_freqs = None,
37
+ freqs_for = 'lang',
38
+ theta = 10000,
39
+ max_freq = 10,
40
+ num_freqs = 1,
41
+ ):
42
+ super().__init__()
43
+ if custom_freqs:
44
+ freqs = custom_freqs
45
+ elif freqs_for == 'lang':
46
+ freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
47
+ elif freqs_for == 'pixel':
48
+ freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
49
+ elif freqs_for == 'constant':
50
+ freqs = torch.ones(num_freqs).float()
51
+ else:
52
+ raise ValueError(f'unknown modality {freqs_for}')
53
+
54
+ if ft_seq_len is None: ft_seq_len = pt_seq_len
55
+ t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
56
+
57
+ freqs_h = torch.einsum('..., f -> ... f', t, freqs)
58
+ freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
59
+
60
+ freqs_w = torch.einsum('..., f -> ... f', t, freqs)
61
+ freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
62
+
63
+ freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1)
64
+
65
+ self.register_buffer("freqs_cos", freqs.cos())
66
+ self.register_buffer("freqs_sin", freqs.sin())
67
+
68
+ logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
69
+
70
+ def forward(self, t, start_index = 0):
71
+ rot_dim = self.freqs_cos.shape[-1]
72
+ end_index = start_index + rot_dim
73
+ assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
74
+ t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
75
+ t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
76
+
77
+ return torch.cat((t_left, t, t_right), dim = -1)
78
+
79
+ class VisionRotaryEmbeddingFast(nn.Module):
80
+ def __init__(
81
+ self,
82
+ dim,
83
+ pt_seq_len,
84
+ ft_seq_len=None,
85
+ custom_freqs = None,
86
+ freqs_for = 'lang',
87
+ theta = 10000,
88
+ max_freq = 10,
89
+ num_freqs = 1,
90
+ patch_dropout = 0.
91
+ ):
92
+ super().__init__()
93
+ if custom_freqs:
94
+ freqs = custom_freqs
95
+ elif freqs_for == 'lang':
96
+ freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
97
+ elif freqs_for == 'pixel':
98
+ freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
99
+ elif freqs_for == 'constant':
100
+ freqs = torch.ones(num_freqs).float()
101
+ else:
102
+ raise ValueError(f'unknown modality {freqs_for}')
103
+
104
+ if ft_seq_len is None: ft_seq_len = pt_seq_len
105
+ t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
106
+
107
+ freqs = torch.einsum('..., f -> ... f', t, freqs)
108
+ freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
109
+ freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
110
+
111
+ freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
112
+ freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
113
+
114
+ self.patch_dropout = patch_dropout
115
+
116
+ self.register_buffer("freqs_cos", freqs_cos)
117
+ self.register_buffer("freqs_sin", freqs_sin)
118
+
119
+ logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
120
+
121
+ def forward(self, t, patch_indices_keep=None):
122
+ if patch_indices_keep is not None:
123
+ batch = t.size()[0]
124
+ batch_indices = torch.arange(batch)
125
+ batch_indices = batch_indices[..., None]
126
+
127
+ freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
128
+ freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
129
+
130
+ freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
131
+ freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
132
+ freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
133
+ freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
134
+
135
+ return t * freqs_cos + rotate_half(t) * freqs_sin
136
+
137
+ return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
eva_clip/timm_model.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ timm model adapter
2
+
3
+ Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
4
+ """
5
+ import logging
6
+ from collections import OrderedDict
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ try:
12
+ import timm
13
+ from timm.models.layers import Mlp, to_2tuple
14
+ try:
15
+ # old timm imports < 0.8.1
16
+ from timm.models.layers.attention_pool2d import RotAttentionPool2d
17
+ from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
18
+ except ImportError:
19
+ # new timm imports >= 0.8.1
20
+ from timm.layers import RotAttentionPool2d
21
+ from timm.layers import AttentionPool2d as AbsAttentionPool2d
22
+ except ImportError:
23
+ timm = None
24
+
25
+ from .utils import freeze_batch_norm_2d
26
+
27
+
28
+ class TimmModel(nn.Module):
29
+ """ timm model adapter
30
+ # FIXME this adapter is a work in progress, may change in ways that break weight compat
31
+ """
32
+
33
+ def __init__(
34
+ self,
35
+ model_name,
36
+ embed_dim,
37
+ image_size=224,
38
+ pool='avg',
39
+ proj='linear',
40
+ proj_bias=False,
41
+ drop=0.,
42
+ pretrained=False):
43
+ super().__init__()
44
+ if timm is None:
45
+ raise RuntimeError("Please `pip install timm` to use timm models.")
46
+
47
+ self.image_size = to_2tuple(image_size)
48
+ self.trunk = timm.create_model(model_name, pretrained=pretrained)
49
+ feat_size = self.trunk.default_cfg.get('pool_size', None)
50
+ feature_ndim = 1 if not feat_size else 2
51
+ if pool in ('abs_attn', 'rot_attn'):
52
+ assert feature_ndim == 2
53
+ # if attn pooling used, remove both classifier and default pool
54
+ self.trunk.reset_classifier(0, global_pool='')
55
+ else:
56
+ # reset global pool if pool config set, otherwise leave as network default
57
+ reset_kwargs = dict(global_pool=pool) if pool else {}
58
+ self.trunk.reset_classifier(0, **reset_kwargs)
59
+ prev_chs = self.trunk.num_features
60
+
61
+ head_layers = OrderedDict()
62
+ if pool == 'abs_attn':
63
+ head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
64
+ prev_chs = embed_dim
65
+ elif pool == 'rot_attn':
66
+ head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
67
+ prev_chs = embed_dim
68
+ else:
69
+ assert proj, 'projection layer needed if non-attention pooling is used.'
70
+
71
+ # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
72
+ if proj == 'linear':
73
+ head_layers['drop'] = nn.Dropout(drop)
74
+ head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
75
+ elif proj == 'mlp':
76
+ head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias))
77
+
78
+ self.head = nn.Sequential(head_layers)
79
+
80
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
81
+ """ lock modules
82
+ Args:
83
+ unlocked_groups (int): leave last n layer groups unlocked (default: 0)
84
+ """
85
+ if not unlocked_groups:
86
+ # lock full model
87
+ for param in self.trunk.parameters():
88
+ param.requires_grad = False
89
+ if freeze_bn_stats:
90
+ freeze_batch_norm_2d(self.trunk)
91
+ else:
92
+ # NOTE: partial freeze requires latest timm (master) branch and is subject to change
93
+ try:
94
+ # FIXME import here until API stable and in an official release
95
+ from timm.models.helpers import group_parameters, group_modules
96
+ except ImportError:
97
+ raise RuntimeError(
98
+ 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
99
+ matcher = self.trunk.group_matcher()
100
+ gparams = group_parameters(self.trunk, matcher)
101
+ max_layer_id = max(gparams.keys())
102
+ max_layer_id = max_layer_id - unlocked_groups
103
+ for group_idx in range(max_layer_id + 1):
104
+ group = gparams[group_idx]
105
+ for param in group:
106
+ self.trunk.get_parameter(param).requires_grad = False
107
+ if freeze_bn_stats:
108
+ gmodules = group_modules(self.trunk, matcher, reverse=True)
109
+ gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
110
+ freeze_batch_norm_2d(self.trunk, gmodules)
111
+
112
+ @torch.jit.ignore
113
+ def set_grad_checkpointing(self, enable=True):
114
+ try:
115
+ self.trunk.set_grad_checkpointing(enable)
116
+ except Exception as e:
117
+ logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
118
+
119
+ def forward(self, x):
120
+ x = self.trunk(x)
121
+ x = self.head(x)
122
+ return x
eva_clip/tokenizer.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ CLIP tokenizer
2
+
3
+ Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ """
5
+ import gzip
6
+ import html
7
+ import os
8
+ from functools import lru_cache
9
+ from typing import Union, List
10
+
11
+ import ftfy
12
+ import regex as re
13
+ import torch
14
+
15
+ # https://stackoverflow.com/q/62691279
16
+ import os
17
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
18
+
19
+
20
+ @lru_cache()
21
+ def default_bpe():
22
+ return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
23
+
24
+
25
+ @lru_cache()
26
+ def bytes_to_unicode():
27
+ """
28
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
29
+ The reversible bpe codes work on unicode strings.
30
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
31
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
32
+ This is a signficant percentage of your normal, say, 32K bpe vocab.
33
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
34
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
35
+ """
36
+ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
37
+ cs = bs[:]
38
+ n = 0
39
+ for b in range(2**8):
40
+ if b not in bs:
41
+ bs.append(b)
42
+ cs.append(2**8+n)
43
+ n += 1
44
+ cs = [chr(n) for n in cs]
45
+ return dict(zip(bs, cs))
46
+
47
+
48
+ def get_pairs(word):
49
+ """Return set of symbol pairs in a word.
50
+ Word is represented as tuple of symbols (symbols being variable-length strings).
51
+ """
52
+ pairs = set()
53
+ prev_char = word[0]
54
+ for char in word[1:]:
55
+ pairs.add((prev_char, char))
56
+ prev_char = char
57
+ return pairs
58
+
59
+
60
+ def basic_clean(text):
61
+ text = ftfy.fix_text(text)
62
+ text = html.unescape(html.unescape(text))
63
+ return text.strip()
64
+
65
+
66
+ def whitespace_clean(text):
67
+ text = re.sub(r'\s+', ' ', text)
68
+ text = text.strip()
69
+ return text
70
+
71
+
72
+ class SimpleTokenizer(object):
73
+ def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
74
+ self.byte_encoder = bytes_to_unicode()
75
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
76
+ merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
77
+ merges = merges[1:49152-256-2+1]
78
+ merges = [tuple(merge.split()) for merge in merges]
79
+ vocab = list(bytes_to_unicode().values())
80
+ vocab = vocab + [v+'</w>' for v in vocab]
81
+ for merge in merges:
82
+ vocab.append(''.join(merge))
83
+ if not special_tokens:
84
+ special_tokens = ['<start_of_text>', '<end_of_text>']
85
+ else:
86
+ special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
87
+ vocab.extend(special_tokens)
88
+ self.encoder = dict(zip(vocab, range(len(vocab))))
89
+ self.decoder = {v: k for k, v in self.encoder.items()}
90
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
91
+ self.cache = {t:t for t in special_tokens}
92
+ special = "|".join(special_tokens)
93
+ self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
94
+
95
+ self.vocab_size = len(self.encoder)
96
+ self.all_special_ids = [self.encoder[t] for t in special_tokens]
97
+
98
+ def bpe(self, token):
99
+ if token in self.cache:
100
+ return self.cache[token]
101
+ word = tuple(token[:-1]) + ( token[-1] + '</w>',)
102
+ pairs = get_pairs(word)
103
+
104
+ if not pairs:
105
+ return token+'</w>'
106
+
107
+ while True:
108
+ bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
109
+ if bigram not in self.bpe_ranks:
110
+ break
111
+ first, second = bigram
112
+ new_word = []
113
+ i = 0
114
+ while i < len(word):
115
+ try:
116
+ j = word.index(first, i)
117
+ new_word.extend(word[i:j])
118
+ i = j
119
+ except:
120
+ new_word.extend(word[i:])
121
+ break
122
+
123
+ if word[i] == first and i < len(word)-1 and word[i+1] == second:
124
+ new_word.append(first+second)
125
+ i += 2
126
+ else:
127
+ new_word.append(word[i])
128
+ i += 1
129
+ new_word = tuple(new_word)
130
+ word = new_word
131
+ if len(word) == 1:
132
+ break
133
+ else:
134
+ pairs = get_pairs(word)
135
+ word = ' '.join(word)
136
+ self.cache[token] = word
137
+ return word
138
+
139
+ def encode(self, text):
140
+ bpe_tokens = []
141
+ text = whitespace_clean(basic_clean(text)).lower()
142
+ for token in re.findall(self.pat, text):
143
+ token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
144
+ bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
145
+ return bpe_tokens
146
+
147
+ def decode(self, tokens):
148
+ text = ''.join([self.decoder[token] for token in tokens])
149
+ text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
150
+ return text
151
+
152
+
153
+ _tokenizer = SimpleTokenizer()
154
+
155
+
156
+ def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
157
+ """
158
+ Returns the tokenized representation of given input string(s)
159
+
160
+ Parameters
161
+ ----------
162
+ texts : Union[str, List[str]]
163
+ An input string or a list of input strings to tokenize
164
+ context_length : int
165
+ The context length to use; all CLIP models use 77 as the context length
166
+
167
+ Returns
168
+ -------
169
+ A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
170
+ """
171
+ if isinstance(texts, str):
172
+ texts = [texts]
173
+
174
+ sot_token = _tokenizer.encoder["<start_of_text>"]
175
+ eot_token = _tokenizer.encoder["<end_of_text>"]
176
+ all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
177
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
178
+
179
+ for i, tokens in enumerate(all_tokens):
180
+ if len(tokens) > context_length:
181
+ tokens = tokens[:context_length] # Truncate
182
+ tokens[-1] = eot_token
183
+ result[i, :len(tokens)] = torch.tensor(tokens)
184
+
185
+ return result
186
+
187
+
188
+ class HFTokenizer:
189
+ "HuggingFace tokenizer wrapper"
190
+ def __init__(self, tokenizer_name:str):
191
+ from transformers import AutoTokenizer
192
+ self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
193
+
194
+ def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor:
195
+ # same cleaning as for default tokenizer, except lowercasing
196
+ # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
197
+ if isinstance(texts, str):
198
+ texts = [texts]
199
+ texts = [whitespace_clean(basic_clean(text)) for text in texts]
200
+ input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids
201
+ return input_ids
eva_clip/transform.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Sequence, Tuple
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torchvision.transforms.functional as F
6
+
7
+ from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
8
+ CenterCrop
9
+
10
+ from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
11
+
12
+
13
+ class ResizeMaxSize(nn.Module):
14
+
15
+ def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
16
+ super().__init__()
17
+ if not isinstance(max_size, int):
18
+ raise TypeError(f"Size should be int. Got {type(max_size)}")
19
+ self.max_size = max_size
20
+ self.interpolation = interpolation
21
+ self.fn = min if fn == 'min' else min
22
+ self.fill = fill
23
+
24
+ def forward(self, img):
25
+ if isinstance(img, torch.Tensor):
26
+ height, width = img.shape[:2]
27
+ else:
28
+ width, height = img.size
29
+ scale = self.max_size / float(max(height, width))
30
+ if scale != 1.0:
31
+ new_size = tuple(round(dim * scale) for dim in (height, width))
32
+ img = F.resize(img, new_size, self.interpolation)
33
+ pad_h = self.max_size - new_size[0]
34
+ pad_w = self.max_size - new_size[1]
35
+ img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
36
+ return img
37
+
38
+
39
+ def _convert_to_rgb(image):
40
+ return image.convert('RGB')
41
+
42
+
43
+ # class CatGen(nn.Module):
44
+ # def __init__(self, num=4):
45
+ # self.num = num
46
+ # def mixgen_batch(image, text):
47
+ # batch_size = image.shape[0]
48
+ # index = np.random.permutation(batch_size)
49
+
50
+ # cat_images = []
51
+ # for i in range(batch_size):
52
+ # # image mixup
53
+ # image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:]
54
+ # # text concat
55
+ # text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0]
56
+ # text = torch.stack(text)
57
+ # return image, text
58
+
59
+
60
+ def image_transform(
61
+ image_size: int,
62
+ is_train: bool,
63
+ mean: Optional[Tuple[float, ...]] = None,
64
+ std: Optional[Tuple[float, ...]] = None,
65
+ resize_longest_max: bool = False,
66
+ fill_color: int = 0,
67
+ ):
68
+ mean = mean or OPENAI_DATASET_MEAN
69
+ if not isinstance(mean, (list, tuple)):
70
+ mean = (mean,) * 3
71
+
72
+ std = std or OPENAI_DATASET_STD
73
+ if not isinstance(std, (list, tuple)):
74
+ std = (std,) * 3
75
+
76
+ if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
77
+ # for square size, pass size as int so that Resize() uses aspect preserving shortest edge
78
+ image_size = image_size[0]
79
+
80
+ normalize = Normalize(mean=mean, std=std)
81
+ if is_train:
82
+ return Compose([
83
+ RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC),
84
+ _convert_to_rgb,
85
+ ToTensor(),
86
+ normalize,
87
+ ])
88
+ else:
89
+ if resize_longest_max:
90
+ transforms = [
91
+ ResizeMaxSize(image_size, fill=fill_color)
92
+ ]
93
+ else:
94
+ transforms = [
95
+ Resize(image_size, interpolation=InterpolationMode.BICUBIC),
96
+ CenterCrop(image_size),
97
+ ]
98
+ transforms.extend([
99
+ _convert_to_rgb,
100
+ ToTensor(),
101
+ normalize,
102
+ ])
103
+ return Compose(transforms)
eva_clip/transformer.py ADDED
@@ -0,0 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
+ from collections import OrderedDict
4
+ import math
5
+ from typing import Callable, Optional, Sequence
6
+ import numpy as np
7
+ import torch
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+ try:
12
+ from timm.models.layers import trunc_normal_
13
+ except:
14
+ from timm.layers import trunc_normal_
15
+
16
+ from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
17
+ from .utils import to_2tuple
18
+
19
+ if os.getenv('ENV_TYPE') == 'deepspeed':
20
+ try:
21
+ import deepspeed
22
+ from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
23
+ except:
24
+ print("Please 'pip install deepspeed'")
25
+ deepspeed = None
26
+ from torch.utils.checkpoint import checkpoint
27
+ else:
28
+ from torch.utils.checkpoint import checkpoint
29
+
30
+ try:
31
+ import xformers.ops as xops
32
+ except ImportError:
33
+ xops = None
34
+ print("Please 'pip install xformers'")
35
+
36
+ class LayerNormFp32(nn.LayerNorm):
37
+ """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
38
+ def __init__(self, *args, **kwargs):
39
+ super().__init__(*args, **kwargs)
40
+
41
+ def forward(self, x: torch.Tensor):
42
+ output = F.layer_norm(
43
+ x.float(),
44
+ self.normalized_shape,
45
+ self.weight.float() if self.weight is not None else None,
46
+ self.bias.float() if self.bias is not None else None,
47
+ self.eps,
48
+ )
49
+ return output.type_as(x)
50
+
51
+
52
+ class LayerNorm(nn.LayerNorm):
53
+ """Subclass torch's LayerNorm (with cast back to input dtype)."""
54
+
55
+ def forward(self, x: torch.Tensor):
56
+ orig_type = x.dtype
57
+ x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
58
+ return x.to(orig_type)
59
+
60
+ class QuickGELU(nn.Module):
61
+ # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
62
+ def forward(self, x: torch.Tensor):
63
+ return x * torch.sigmoid(1.702 * x)
64
+
65
+
66
+ class LayerScale(nn.Module):
67
+ def __init__(self, dim, init_values=1e-5, inplace=False):
68
+ super().__init__()
69
+ self.inplace = inplace
70
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
71
+
72
+ def forward(self, x):
73
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
74
+
75
+ class PatchDropout(nn.Module):
76
+ """
77
+ https://arxiv.org/abs/2212.00794
78
+ """
79
+
80
+ def __init__(self, prob, exclude_first_token=True):
81
+ super().__init__()
82
+ assert 0 <= prob < 1.
83
+ self.prob = prob
84
+ self.exclude_first_token = exclude_first_token # exclude CLS token
85
+ logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
86
+
87
+ def forward(self, x):
88
+ if not self.training or self.prob == 0.:
89
+ return x
90
+
91
+ if self.exclude_first_token:
92
+ cls_tokens, x = x[:, :1], x[:, 1:]
93
+ else:
94
+ cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
95
+
96
+ batch = x.size()[0]
97
+ num_tokens = x.size()[1]
98
+
99
+ batch_indices = torch.arange(batch)
100
+ batch_indices = batch_indices[..., None]
101
+
102
+ keep_prob = 1 - self.prob
103
+ num_patches_keep = max(1, int(num_tokens * keep_prob))
104
+
105
+ rand = torch.randn(batch, num_tokens)
106
+ patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
107
+
108
+ x = x[batch_indices, patch_indices_keep]
109
+
110
+ if self.exclude_first_token:
111
+ x = torch.cat((cls_tokens, x), dim=1)
112
+
113
+ if self.training and os.getenv('RoPE') == '1':
114
+ return x, patch_indices_keep
115
+
116
+ return x
117
+
118
+
119
+ def _in_projection_packed(
120
+ q: torch.Tensor,
121
+ k: torch.Tensor,
122
+ v: torch.Tensor,
123
+ w: torch.Tensor,
124
+ b: Optional[torch.Tensor] = None,
125
+ ):
126
+ """
127
+ https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726
128
+ """
129
+ E = q.size(-1)
130
+ if k is v:
131
+ if q is k:
132
+ # self-attention
133
+ return F.linear(q, w, b).chunk(3, dim=-1)
134
+ else:
135
+ # encoder-decoder attention
136
+ w_q, w_kv = w.split([E, E * 2])
137
+ if b is None:
138
+ b_q = b_kv = None
139
+ else:
140
+ b_q, b_kv = b.split([E, E * 2])
141
+ return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
142
+ else:
143
+ w_q, w_k, w_v = w.chunk(3)
144
+ if b is None:
145
+ b_q = b_k = b_v = None
146
+ else:
147
+ b_q, b_k, b_v = b.chunk(3)
148
+ return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
149
+
150
+ class Attention(nn.Module):
151
+ def __init__(
152
+ self,
153
+ dim,
154
+ num_heads=8,
155
+ qkv_bias=True,
156
+ scaled_cosine=False,
157
+ scale_heads=False,
158
+ logit_scale_max=math.log(1. / 0.01),
159
+ attn_drop=0.,
160
+ proj_drop=0.,
161
+ xattn=False,
162
+ rope=False
163
+ ):
164
+ super().__init__()
165
+ self.scaled_cosine = scaled_cosine
166
+ self.scale_heads = scale_heads
167
+ assert dim % num_heads == 0, 'dim should be divisible by num_heads'
168
+ self.num_heads = num_heads
169
+ self.head_dim = dim // num_heads
170
+ self.scale = self.head_dim ** -0.5
171
+ self.logit_scale_max = logit_scale_max
172
+
173
+ # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
174
+ self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
175
+ if qkv_bias:
176
+ self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
177
+ else:
178
+ self.in_proj_bias = None
179
+
180
+ if self.scaled_cosine:
181
+ self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
182
+ else:
183
+ self.logit_scale = None
184
+ self.attn_drop = nn.Dropout(attn_drop)
185
+ if self.scale_heads:
186
+ self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
187
+ else:
188
+ self.head_scale = None
189
+ self.out_proj = nn.Linear(dim, dim)
190
+ self.out_drop = nn.Dropout(proj_drop)
191
+ self.xattn = xattn
192
+ self.xattn_drop = attn_drop
193
+ self.rope = rope
194
+
195
+ def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
196
+ L, N, C = x.shape
197
+ q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
198
+ if self.xattn:
199
+ q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
200
+ k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
201
+ v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
202
+
203
+ x = xops.memory_efficient_attention(
204
+ q, k, v,
205
+ p=self.xattn_drop,
206
+ scale=self.scale if self.logit_scale is None else None,
207
+ attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None,
208
+ )
209
+ else:
210
+ q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
211
+ k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
212
+ v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
213
+
214
+ if self.logit_scale is not None:
215
+ attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
216
+ logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
217
+ attn = attn.view(N, self.num_heads, L, L) * logit_scale
218
+ attn = attn.view(-1, L, L)
219
+ else:
220
+ q = q * self.scale
221
+ attn = torch.bmm(q, k.transpose(-1, -2))
222
+
223
+ if attn_mask is not None:
224
+ if attn_mask.dtype == torch.bool:
225
+ new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
226
+ new_attn_mask.masked_fill_(attn_mask, float("-inf"))
227
+ attn_mask = new_attn_mask
228
+ attn += attn_mask
229
+
230
+ attn = attn.softmax(dim=-1)
231
+ attn = self.attn_drop(attn)
232
+
233
+ x = torch.bmm(attn, v)
234
+
235
+ if self.head_scale is not None:
236
+ x = x.view(N, self.num_heads, L, C) * self.head_scale
237
+ x = x.view(-1, L, C)
238
+ x = x.transpose(0, 1).reshape(L, N, C)
239
+ x = self.out_proj(x)
240
+ x = self.out_drop(x)
241
+ return x
242
+
243
+ class CustomAttention(nn.Module):
244
+ def __init__(
245
+ self,
246
+ dim,
247
+ num_heads=8,
248
+ qkv_bias=True,
249
+ scaled_cosine=True,
250
+ scale_heads=False,
251
+ logit_scale_max=math.log(1. / 0.01),
252
+ attn_drop=0.,
253
+ proj_drop=0.,
254
+ xattn=False
255
+ ):
256
+ super().__init__()
257
+ self.scaled_cosine = scaled_cosine
258
+ self.scale_heads = scale_heads
259
+ assert dim % num_heads == 0, 'dim should be divisible by num_heads'
260
+ self.num_heads = num_heads
261
+ self.head_dim = dim // num_heads
262
+ self.scale = self.head_dim ** -0.5
263
+ self.logit_scale_max = logit_scale_max
264
+
265
+ # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
266
+ self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
267
+ if qkv_bias:
268
+ self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
269
+ else:
270
+ self.in_proj_bias = None
271
+
272
+ if self.scaled_cosine:
273
+ self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
274
+ else:
275
+ self.logit_scale = None
276
+ self.attn_drop = nn.Dropout(attn_drop)
277
+ if self.scale_heads:
278
+ self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
279
+ else:
280
+ self.head_scale = None
281
+ self.out_proj = nn.Linear(dim, dim)
282
+ self.out_drop = nn.Dropout(proj_drop)
283
+ self.xattn = xattn
284
+ self.xattn_drop = attn_drop
285
+
286
+ def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
287
+ q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
288
+ N_q, B_q, C_q = q.shape
289
+ N_k, B_k, C_k = k.shape
290
+ N_v, B_v, C_v = v.shape
291
+ if self.xattn:
292
+ # B, N, C -> B, N, num_heads, C
293
+ q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1)
294
+ k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1)
295
+ v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1)
296
+
297
+ x = xops.memory_efficient_attention(
298
+ q, k, v,
299
+ p=self.xattn_drop,
300
+ scale=self.scale if self.logit_scale is None else None,
301
+ attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None
302
+ )
303
+ else:
304
+ # B*H, L, C
305
+ q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1)
306
+ k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1)
307
+ v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1)
308
+
309
+ if self.logit_scale is not None:
310
+ # B*H, N_q, N_k
311
+ attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
312
+ logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
313
+ attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale
314
+ attn = attn.view(-1, N_q, N_k)
315
+ else:
316
+ q = q * self.scale
317
+ attn = torch.bmm(q, k.transpose(-1, -2))
318
+
319
+ if attn_mask is not None:
320
+ if attn_mask.dtype == torch.bool:
321
+ new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
322
+ new_attn_mask.masked_fill_(attn_mask, float("-inf"))
323
+ attn_mask = new_attn_mask
324
+ attn += attn_mask
325
+
326
+ attn = attn.softmax(dim=-1)
327
+ attn = self.attn_drop(attn)
328
+
329
+ x = torch.bmm(attn, v)
330
+
331
+ if self.head_scale is not None:
332
+ x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale
333
+ x = x.view(-1, N_q, C_q)
334
+ x = x.transpose(0, 1).reshape(N_q, B_q, C_q)
335
+ x = self.out_proj(x)
336
+ x = self.out_drop(x)
337
+ return x
338
+
339
+ class CustomResidualAttentionBlock(nn.Module):
340
+ def __init__(
341
+ self,
342
+ d_model: int,
343
+ n_head: int,
344
+ mlp_ratio: float = 4.0,
345
+ ls_init_value: float = None,
346
+ act_layer: Callable = nn.GELU,
347
+ norm_layer: Callable = LayerNorm,
348
+ scale_cosine_attn: bool = False,
349
+ scale_heads: bool = False,
350
+ scale_attn: bool = False,
351
+ scale_fc: bool = False,
352
+ cross_attn: bool = False,
353
+ xattn: bool = False,
354
+ ):
355
+ super().__init__()
356
+
357
+ self.ln_1 = norm_layer(d_model)
358
+ self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1
359
+ self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1
360
+ self.attn = CustomAttention(
361
+ d_model, n_head,
362
+ qkv_bias=True,
363
+ attn_drop=0.,
364
+ proj_drop=0.,
365
+ scaled_cosine=scale_cosine_attn,
366
+ scale_heads=scale_heads,
367
+ xattn=xattn
368
+ )
369
+
370
+ self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
371
+ self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
372
+
373
+ self.ln_2 = norm_layer(d_model)
374
+ mlp_width = int(d_model * mlp_ratio)
375
+ self.mlp = nn.Sequential(OrderedDict([
376
+ ("c_fc", nn.Linear(d_model, mlp_width)),
377
+ ('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
378
+ ("gelu", act_layer()),
379
+ ("c_proj", nn.Linear(mlp_width, d_model))
380
+ ]))
381
+
382
+ self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
383
+
384
+ def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
385
+ q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask)))
386
+ q = q + self.ls_2(self.mlp(self.ln_2(q)))
387
+ return q
388
+
389
+ class CustomTransformer(nn.Module):
390
+ def __init__(
391
+ self,
392
+ width: int,
393
+ layers: int,
394
+ heads: int,
395
+ mlp_ratio: float = 4.0,
396
+ ls_init_value: float = None,
397
+ act_layer: Callable = nn.GELU,
398
+ norm_layer: Callable = LayerNorm,
399
+ scale_cosine_attn: bool = True,
400
+ scale_heads: bool = False,
401
+ scale_attn: bool = False,
402
+ scale_fc: bool = False,
403
+ cross_attn: bool = False,
404
+ xattn: bool = False,
405
+ ):
406
+ super().__init__()
407
+ self.width = width
408
+ self.layers = layers
409
+ self.grad_checkpointing = False
410
+ self.xattn = xattn
411
+
412
+ self.resblocks = nn.ModuleList([
413
+ CustomResidualAttentionBlock(
414
+ width,
415
+ heads,
416
+ mlp_ratio,
417
+ ls_init_value=ls_init_value,
418
+ act_layer=act_layer,
419
+ norm_layer=norm_layer,
420
+ scale_cosine_attn=scale_cosine_attn,
421
+ scale_heads=scale_heads,
422
+ scale_attn=scale_attn,
423
+ scale_fc=scale_fc,
424
+ cross_attn=cross_attn,
425
+ xattn=xattn)
426
+ for _ in range(layers)
427
+ ])
428
+
429
+ def get_cast_dtype(self) -> torch.dtype:
430
+ return self.resblocks[0].mlp.c_fc.weight.dtype
431
+
432
+ def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None):
433
+ if k is None and v is None:
434
+ k = v = q
435
+ for r in self.resblocks:
436
+ if self.grad_checkpointing and not torch.jit.is_scripting():
437
+ q = checkpoint(r, q, k, v, attn_mask)
438
+ else:
439
+ q = r(q, k, v, attn_mask=attn_mask)
440
+ return q
441
+
442
+
443
+ class ResidualAttentionBlock(nn.Module):
444
+ def __init__(
445
+ self,
446
+ d_model: int,
447
+ n_head: int,
448
+ mlp_ratio: float = 4.0,
449
+ ls_init_value: float = None,
450
+ act_layer: Callable = nn.GELU,
451
+ norm_layer: Callable = LayerNorm,
452
+ xattn: bool = False,
453
+ ):
454
+ super().__init__()
455
+
456
+ self.ln_1 = norm_layer(d_model)
457
+ if xattn:
458
+ self.attn = Attention(d_model, n_head, xattn=True)
459
+ else:
460
+ self.attn = nn.MultiheadAttention(d_model, n_head)
461
+ self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
462
+
463
+ self.ln_2 = norm_layer(d_model)
464
+ mlp_width = int(d_model * mlp_ratio)
465
+ self.mlp = nn.Sequential(OrderedDict([
466
+ ("c_fc", nn.Linear(d_model, mlp_width)),
467
+ ("gelu", act_layer()),
468
+ ("c_proj", nn.Linear(mlp_width, d_model))
469
+ ]))
470
+
471
+ self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
472
+ self.xattn = xattn
473
+
474
+ def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
475
+ attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
476
+ if self.xattn:
477
+ return self.attn(x, attn_mask=attn_mask)
478
+ return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
479
+
480
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
481
+ x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
482
+ x = x + self.ls_2(self.mlp(self.ln_2(x)))
483
+ return x
484
+
485
+ class Transformer(nn.Module):
486
+ def __init__(
487
+ self,
488
+ width: int,
489
+ layers: int,
490
+ heads: int,
491
+ mlp_ratio: float = 4.0,
492
+ ls_init_value: float = None,
493
+ act_layer: Callable = nn.GELU,
494
+ norm_layer: Callable = LayerNorm,
495
+ xattn: bool = False,
496
+ ):
497
+ super().__init__()
498
+ self.width = width
499
+ self.layers = layers
500
+ self.grad_checkpointing = False
501
+
502
+ self.resblocks = nn.ModuleList([
503
+ ResidualAttentionBlock(
504
+ width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn)
505
+ for _ in range(layers)
506
+ ])
507
+
508
+ def get_cast_dtype(self) -> torch.dtype:
509
+ return self.resblocks[0].mlp.c_fc.weight.dtype
510
+
511
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
512
+ for r in self.resblocks:
513
+ if self.grad_checkpointing and not torch.jit.is_scripting():
514
+ x = checkpoint(r, x, attn_mask)
515
+ else:
516
+ x = r(x, attn_mask=attn_mask)
517
+ return x
518
+
519
+
520
+ class VisionTransformer(nn.Module):
521
+ def __init__(
522
+ self,
523
+ image_size: int,
524
+ patch_size: int,
525
+ width: int,
526
+ layers: int,
527
+ heads: int,
528
+ mlp_ratio: float,
529
+ ls_init_value: float = None,
530
+ patch_dropout: float = 0.,
531
+ global_average_pool: bool = False,
532
+ output_dim: int = 512,
533
+ act_layer: Callable = nn.GELU,
534
+ norm_layer: Callable = LayerNorm,
535
+ xattn: bool = False,
536
+ ):
537
+ super().__init__()
538
+ self.image_size = to_2tuple(image_size)
539
+ self.patch_size = to_2tuple(patch_size)
540
+ self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
541
+ self.output_dim = output_dim
542
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
543
+
544
+ scale = width ** -0.5
545
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
546
+ self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
547
+
548
+ # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
549
+ self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
550
+ self.ln_pre = norm_layer(width)
551
+
552
+ self.transformer = Transformer(
553
+ width,
554
+ layers,
555
+ heads,
556
+ mlp_ratio,
557
+ ls_init_value=ls_init_value,
558
+ act_layer=act_layer,
559
+ norm_layer=norm_layer,
560
+ xattn=xattn
561
+ )
562
+
563
+ self.global_average_pool = global_average_pool
564
+ self.ln_post = norm_layer(width)
565
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
566
+
567
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
568
+ for param in self.parameters():
569
+ param.requires_grad = False
570
+
571
+ if unlocked_groups != 0:
572
+ groups = [
573
+ [
574
+ self.conv1,
575
+ self.class_embedding,
576
+ self.positional_embedding,
577
+ self.ln_pre,
578
+ ],
579
+ *self.transformer.resblocks[:-1],
580
+ [
581
+ self.transformer.resblocks[-1],
582
+ self.ln_post,
583
+ ],
584
+ self.proj,
585
+ ]
586
+
587
+ def _unlock(x):
588
+ if isinstance(x, Sequence):
589
+ for g in x:
590
+ _unlock(g)
591
+ else:
592
+ if isinstance(x, torch.nn.Parameter):
593
+ x.requires_grad = True
594
+ else:
595
+ for p in x.parameters():
596
+ p.requires_grad = True
597
+
598
+ _unlock(groups[-unlocked_groups:])
599
+
600
+ def get_num_layers(self):
601
+ return self.transformer.layers
602
+
603
+ @torch.jit.ignore
604
+ def set_grad_checkpointing(self, enable=True):
605
+ self.transformer.grad_checkpointing = enable
606
+
607
+ @torch.jit.ignore
608
+ def no_weight_decay(self):
609
+ return {'positional_embedding', 'class_embedding'}
610
+
611
+ def forward(self, x: torch.Tensor, return_all_features: bool=False):
612
+ x = self.conv1(x) # shape = [*, width, grid, grid]
613
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
614
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
615
+ x = torch.cat(
616
+ [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
617
+ x], dim=1) # shape = [*, grid ** 2 + 1, width]
618
+ x = x + self.positional_embedding.to(x.dtype)
619
+
620
+ # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
621
+ x = self.patch_dropout(x)
622
+ x = self.ln_pre(x)
623
+
624
+ x = x.permute(1, 0, 2) # NLD -> LND
625
+ x = self.transformer(x)
626
+ x = x.permute(1, 0, 2) # LND -> NLD
627
+
628
+ if not return_all_features:
629
+ if self.global_average_pool:
630
+ x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1)
631
+ else:
632
+ x = x[:, 0]
633
+
634
+ x = self.ln_post(x)
635
+
636
+ if self.proj is not None:
637
+ x = x @ self.proj
638
+
639
+ return x
640
+
641
+
642
+ class TextTransformer(nn.Module):
643
+ def __init__(
644
+ self,
645
+ context_length: int = 77,
646
+ vocab_size: int = 49408,
647
+ width: int = 512,
648
+ heads: int = 8,
649
+ layers: int = 12,
650
+ ls_init_value: float = None,
651
+ output_dim: int = 512,
652
+ act_layer: Callable = nn.GELU,
653
+ norm_layer: Callable = LayerNorm,
654
+ xattn: bool= False,
655
+ attn_mask: bool = True
656
+ ):
657
+ super().__init__()
658
+ self.context_length = context_length
659
+ self.vocab_size = vocab_size
660
+ self.width = width
661
+ self.output_dim = output_dim
662
+
663
+ self.token_embedding = nn.Embedding(vocab_size, width)
664
+ self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
665
+ self.transformer = Transformer(
666
+ width=width,
667
+ layers=layers,
668
+ heads=heads,
669
+ ls_init_value=ls_init_value,
670
+ act_layer=act_layer,
671
+ norm_layer=norm_layer,
672
+ xattn=xattn
673
+ )
674
+
675
+ self.xattn = xattn
676
+ self.ln_final = norm_layer(width)
677
+ self.text_projection = nn.Parameter(torch.empty(width, output_dim))
678
+
679
+ if attn_mask:
680
+ self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
681
+ else:
682
+ self.attn_mask = None
683
+
684
+ self.init_parameters()
685
+
686
+ def init_parameters(self):
687
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
688
+ nn.init.normal_(self.positional_embedding, std=0.01)
689
+
690
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
691
+ attn_std = self.transformer.width ** -0.5
692
+ fc_std = (2 * self.transformer.width) ** -0.5
693
+ for block in self.transformer.resblocks:
694
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
695
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
696
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
697
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
698
+
699
+ if self.text_projection is not None:
700
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
701
+
702
+ @torch.jit.ignore
703
+ def set_grad_checkpointing(self, enable=True):
704
+ self.transformer.grad_checkpointing = enable
705
+
706
+ @torch.jit.ignore
707
+ def no_weight_decay(self):
708
+ # return {'positional_embedding', 'token_embedding'}
709
+ return {'positional_embedding'}
710
+
711
+ def get_num_layers(self):
712
+ return self.transformer.layers
713
+
714
+ def build_attention_mask(self):
715
+ # lazily create causal attention mask, with full attention between the vision tokens
716
+ # pytorch uses additive attention mask; fill with -inf
717
+ mask = torch.empty(self.context_length, self.context_length)
718
+ mask.fill_(float("-inf"))
719
+ mask.triu_(1) # zero out the lower diagonal
720
+ return mask
721
+
722
+ def forward(self, text, return_all_features: bool=False):
723
+ cast_dtype = self.transformer.get_cast_dtype()
724
+ x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
725
+
726
+ x = x + self.positional_embedding.to(cast_dtype)
727
+ x = x.permute(1, 0, 2) # NLD -> LND
728
+ x = self.transformer(x, attn_mask=self.attn_mask)
729
+ # x = self.transformer(x) # no attention mask is applied
730
+ x = x.permute(1, 0, 2) # LND -> NLD
731
+ x = self.ln_final(x)
732
+
733
+ if not return_all_features:
734
+ # x.shape = [batch_size, n_ctx, transformer.width]
735
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
736
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
737
+ return x
eva_clip/utils.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import repeat
2
+ import collections.abc
3
+ import logging
4
+ import math
5
+ import numpy as np
6
+
7
+ import torch
8
+ from torch import nn as nn
9
+ from torchvision.ops.misc import FrozenBatchNorm2d
10
+ import torch.nn.functional as F
11
+
12
+ # open CLIP
13
+ def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
14
+ # Rescale the grid of position embeddings when loading from state_dict
15
+ old_pos_embed = state_dict.get('visual.positional_embedding', None)
16
+ if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
17
+ return
18
+ grid_size = to_2tuple(model.visual.grid_size)
19
+ extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
20
+ new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
21
+ if new_seq_len == old_pos_embed.shape[0]:
22
+ return
23
+
24
+ if extra_tokens:
25
+ pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
26
+ else:
27
+ pos_emb_tok, pos_emb_img = None, old_pos_embed
28
+ old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
29
+
30
+ logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
31
+ pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
32
+ pos_emb_img = F.interpolate(
33
+ pos_emb_img,
34
+ size=grid_size,
35
+ mode=interpolation,
36
+ align_corners=True,
37
+ )
38
+ pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
39
+ if pos_emb_tok is not None:
40
+ new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
41
+ else:
42
+ new_pos_embed = pos_emb_img
43
+ state_dict['visual.positional_embedding'] = new_pos_embed
44
+
45
+
46
+ def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
47
+ # Rescale the grid of position embeddings when loading from state_dict
48
+ old_pos_embed = state_dict.get('positional_embedding', None)
49
+ if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
50
+ return
51
+ grid_size = to_2tuple(model.visual.grid_size)
52
+ extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
53
+ new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
54
+ if new_seq_len == old_pos_embed.shape[0]:
55
+ return
56
+
57
+ if extra_tokens:
58
+ pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
59
+ else:
60
+ pos_emb_tok, pos_emb_img = None, old_pos_embed
61
+ old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
62
+
63
+ logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
64
+ pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
65
+ pos_emb_img = F.interpolate(
66
+ pos_emb_img,
67
+ size=grid_size,
68
+ mode=interpolation,
69
+ align_corners=True,
70
+ )
71
+ pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
72
+ if pos_emb_tok is not None:
73
+ new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
74
+ else:
75
+ new_pos_embed = pos_emb_img
76
+ state_dict['positional_embedding'] = new_pos_embed
77
+
78
+ def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
79
+ all_keys = list(state_dict.keys())
80
+ # interpolate position embedding
81
+ if 'visual.pos_embed' in state_dict:
82
+ pos_embed_checkpoint = state_dict['visual.pos_embed']
83
+ embedding_size = pos_embed_checkpoint.shape[-1]
84
+ num_patches = model.visual.patch_embed.num_patches
85
+ num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
86
+ # height (== width) for the checkpoint position embedding
87
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
88
+ # height (== width) for the new position embedding
89
+ new_size = int(num_patches ** 0.5)
90
+ # class_token and dist_token are kept unchanged
91
+ if orig_size != new_size:
92
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
93
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
94
+ # only the position tokens are interpolated
95
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
96
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
97
+ pos_tokens = torch.nn.functional.interpolate(
98
+ pos_tokens.float(), size=(new_size, new_size), mode='bicubic', align_corners=False)
99
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
100
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
101
+ state_dict['visual.pos_embed'] = new_pos_embed
102
+
103
+ patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
104
+ patch_size = model.visual.patch_embed.patch_size
105
+ state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
106
+ patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
107
+
108
+
109
+ def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
110
+ all_keys = list(state_dict.keys())
111
+ # interpolate position embedding
112
+ if 'pos_embed' in state_dict:
113
+ pos_embed_checkpoint = state_dict['pos_embed']
114
+ embedding_size = pos_embed_checkpoint.shape[-1]
115
+ num_patches = model.visual.patch_embed.num_patches
116
+ num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
117
+ # height (== width) for the checkpoint position embedding
118
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
119
+ # height (== width) for the new position embedding
120
+ new_size = int(num_patches ** 0.5)
121
+ # class_token and dist_token are kept unchanged
122
+ if orig_size != new_size:
123
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
124
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
125
+ # only the position tokens are interpolated
126
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
127
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
128
+ pos_tokens = torch.nn.functional.interpolate(
129
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
130
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
131
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
132
+ state_dict['pos_embed'] = new_pos_embed
133
+
134
+ patch_embed_proj = state_dict['patch_embed.proj.weight']
135
+ patch_size = model.visual.patch_embed.patch_size
136
+ state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
137
+ patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
138
+
139
+
140
+ def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
141
+ all_keys = list(state_dict.keys())
142
+ for key in all_keys:
143
+ if "relative_position_index" in key:
144
+ state_dict.pop(key)
145
+
146
+ if "relative_position_bias_table" in key:
147
+ rel_pos_bias = state_dict[key]
148
+ src_num_pos, num_attn_heads = rel_pos_bias.size()
149
+ dst_num_pos, _ = model.visual.state_dict()[key].size()
150
+ dst_patch_shape = model.visual.patch_embed.patch_shape
151
+ if dst_patch_shape[0] != dst_patch_shape[1]:
152
+ raise NotImplementedError()
153
+ num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
154
+ src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
155
+ dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
156
+ if src_size != dst_size:
157
+ print("Position interpolate for %s from %dx%d to %dx%d" % (
158
+ key, src_size, src_size, dst_size, dst_size))
159
+ extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
160
+ rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
161
+
162
+ def geometric_progression(a, r, n):
163
+ return a * (1.0 - r ** n) / (1.0 - r)
164
+
165
+ left, right = 1.01, 1.5
166
+ while right - left > 1e-6:
167
+ q = (left + right) / 2.0
168
+ gp = geometric_progression(1, q, src_size // 2)
169
+ if gp > dst_size // 2:
170
+ right = q
171
+ else:
172
+ left = q
173
+
174
+ # if q > 1.090307:
175
+ # q = 1.090307
176
+
177
+ dis = []
178
+ cur = 1
179
+ for i in range(src_size // 2):
180
+ dis.append(cur)
181
+ cur += q ** (i + 1)
182
+
183
+ r_ids = [-_ for _ in reversed(dis)]
184
+
185
+ x = r_ids + [0] + dis
186
+ y = r_ids + [0] + dis
187
+
188
+ t = dst_size // 2.0
189
+ dx = np.arange(-t, t + 0.1, 1.0)
190
+ dy = np.arange(-t, t + 0.1, 1.0)
191
+
192
+ print("Original positions = %s" % str(x))
193
+ print("Target positions = %s" % str(dx))
194
+
195
+ all_rel_pos_bias = []
196
+
197
+ for i in range(num_attn_heads):
198
+ z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
199
+ f = F.interpolate.interp2d(x, y, z, kind='cubic')
200
+ all_rel_pos_bias.append(
201
+ torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
202
+
203
+ rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
204
+
205
+ new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
206
+ state_dict[key] = new_rel_pos_bias
207
+
208
+ # interpolate position embedding
209
+ if 'pos_embed' in state_dict:
210
+ pos_embed_checkpoint = state_dict['pos_embed']
211
+ embedding_size = pos_embed_checkpoint.shape[-1]
212
+ num_patches = model.visual.patch_embed.num_patches
213
+ num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
214
+ # height (== width) for the checkpoint position embedding
215
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
216
+ # height (== width) for the new position embedding
217
+ new_size = int(num_patches ** 0.5)
218
+ # class_token and dist_token are kept unchanged
219
+ if orig_size != new_size:
220
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
221
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
222
+ # only the position tokens are interpolated
223
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
224
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
225
+ pos_tokens = torch.nn.functional.interpolate(
226
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
227
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
228
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
229
+ state_dict['pos_embed'] = new_pos_embed
230
+
231
+ patch_embed_proj = state_dict['patch_embed.proj.weight']
232
+ patch_size = model.visual.patch_embed.patch_size
233
+ state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
234
+ patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
235
+
236
+
237
+ def freeze_batch_norm_2d(module, module_match={}, name=''):
238
+ """
239
+ Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
240
+ itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
241
+ returned. Otherwise, the module is walked recursively and submodules are converted in place.
242
+
243
+ Args:
244
+ module (torch.nn.Module): Any PyTorch module.
245
+ module_match (dict): Dictionary of full module names to freeze (all if empty)
246
+ name (str): Full module name (prefix)
247
+
248
+ Returns:
249
+ torch.nn.Module: Resulting module
250
+
251
+ Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
252
+ """
253
+ res = module
254
+ is_match = True
255
+ if module_match:
256
+ is_match = name in module_match
257
+ if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
258
+ res = FrozenBatchNorm2d(module.num_features)
259
+ res.num_features = module.num_features
260
+ res.affine = module.affine
261
+ if module.affine:
262
+ res.weight.data = module.weight.data.clone().detach()
263
+ res.bias.data = module.bias.data.clone().detach()
264
+ res.running_mean.data = module.running_mean.data
265
+ res.running_var.data = module.running_var.data
266
+ res.eps = module.eps
267
+ else:
268
+ for child_name, child in module.named_children():
269
+ full_child_name = '.'.join([name, child_name]) if name else child_name
270
+ new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
271
+ if new_child is not child:
272
+ res.add_module(child_name, new_child)
273
+ return res
274
+
275
+
276
+ # From PyTorch internals
277
+ def _ntuple(n):
278
+ def parse(x):
279
+ if isinstance(x, collections.abc.Iterable):
280
+ return x
281
+ return tuple(repeat(x, n))
282
+ return parse
283
+
284
+
285
+ to_1tuple = _ntuple(1)
286
+ to_2tuple = _ntuple(2)
287
+ to_3tuple = _ntuple(3)
288
+ to_4tuple = _ntuple(4)
289
+ to_ntuple = lambda n, x: _ntuple(n)(x)
290
+
291
+
292
+ def is_logging(args):
293
+ def is_global_master(args):
294
+ return args.rank == 0
295
+
296
+ def is_local_master(args):
297
+ return args.local_rank == 0
298
+
299
+ def is_master(args, local=False):
300
+ return is_local_master(args) if local else is_global_master(args)
301
+ return is_master
302
+
303
+
304
+ class AllGather(torch.autograd.Function):
305
+ """An autograd function that performs allgather on a tensor.
306
+ Performs all_gather operation on the provided tensors.
307
+ *** Warning ***: torch.distributed.all_gather has no gradient.
308
+ """
309
+
310
+ @staticmethod
311
+ def forward(ctx, tensor, rank, world_size):
312
+ tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
313
+ torch.distributed.all_gather(tensors_gather, tensor)
314
+ ctx.rank = rank
315
+ ctx.batch_size = tensor.shape[0]
316
+ return torch.cat(tensors_gather, 0)
317
+
318
+ @staticmethod
319
+ def backward(ctx, grad_output):
320
+ return (
321
+ grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
322
+ None,
323
+ None
324
+ )
325
+
326
+ allgather = AllGather.apply
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": 128001,
5
+ "transformers_version": "4.41.0"
6
+ }
mm_projector_builder.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch.nn as nn
16
+ import re
17
+
18
+
19
+ class IdentityMap(nn.Module):
20
+ def __init__(self):
21
+ super().__init__()
22
+
23
+ def forward(self, x, *args, **kwargs):
24
+ return x
25
+
26
+ @property
27
+ def config(self):
28
+ return {"mm_projector_type": 'identity'}
29
+
30
+
31
+ class SimpleResBlock(nn.Module):
32
+ def __init__(self, channels):
33
+ super().__init__()
34
+ self.pre_norm = nn.LayerNorm(channels)
35
+
36
+ self.proj = nn.Sequential(
37
+ nn.Linear(channels, channels),
38
+ nn.GELU(),
39
+ nn.Linear(channels, channels)
40
+ )
41
+ def forward(self, x):
42
+ x = self.pre_norm(x)
43
+ return x + self.proj(x)
44
+
45
+
46
+ def build_vision_projector(mm_hidden_size=1024, hidden_size=4096, projector_type="mlp2x_gelu"):
47
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
48
+ if mlp_gelu_match:
49
+ mlp_depth = int(mlp_gelu_match.group(1))
50
+ modules = [nn.Linear(mm_hidden_size, hidden_size)]
51
+ for _ in range(1, mlp_depth):
52
+ modules.append(nn.GELU())
53
+ modules.append(nn.Linear(hidden_size, hidden_size))
54
+ return nn.Sequential(*modules)
55
+
56
+ if projector_type == 'identity':
57
+ return IdentityMap()
58
+
59
+ raise ValueError(f'Unknown projector type: {projector_type}')
modeling_kangaroo.py ADDED
@@ -0,0 +1,1461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch LLaMA model."""
21
+
22
+ import math
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
33
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
34
+ from transformers.modeling_outputs import (
35
+ BaseModelOutputWithPast,
36
+ CausalLMOutputWithPast,
37
+ QuestionAnsweringModelOutput,
38
+ SequenceClassifierOutputWithPast,
39
+ )
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.models.llama.configuration_llama import LlamaConfig
51
+
52
+ from eva_clip import create_model_and_transforms
53
+ from .mm_projector_builder import build_vision_projector
54
+
55
+ if is_flash_attn_2_available():
56
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
57
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
58
+
59
+ from .data_utils import get_input, add_pred_to_history
60
+ import transformers
61
+
62
+ logger = logging.get_logger(__name__)
63
+
64
+ _CONFIG_FOR_DOC = "LlamaConfig"
65
+
66
+
67
+ def _get_unpad_data(attention_mask):
68
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
69
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
70
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
71
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
72
+ return (
73
+ indices,
74
+ cu_seqlens,
75
+ max_seqlen_in_batch,
76
+ )
77
+
78
+
79
+ class LlamaRMSNorm(nn.Module):
80
+ def __init__(self, hidden_size, eps=1e-6):
81
+ """
82
+ LlamaRMSNorm is equivalent to T5LayerNorm
83
+ """
84
+ super().__init__()
85
+ self.weight = nn.Parameter(torch.ones(hidden_size))
86
+ self.variance_epsilon = eps
87
+
88
+ def forward(self, hidden_states):
89
+ input_dtype = hidden_states.dtype
90
+ hidden_states = hidden_states.to(torch.float32)
91
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
92
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
93
+ return self.weight * hidden_states.to(input_dtype)
94
+
95
+
96
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
97
+
98
+
99
+ class LlamaRotaryEmbedding(nn.Module):
100
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
101
+ super().__init__()
102
+ self.scaling_factor = scaling_factor
103
+ self.dim = dim
104
+ self.max_position_embeddings = max_position_embeddings
105
+ self.base = base
106
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
107
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
108
+ # For BC we register cos and sin cached
109
+ self.max_seq_len_cached = max_position_embeddings
110
+
111
+ #@torch.no_grad()
112
+ #def forward(self, x, position_ids):
113
+ # # x: [bs, num_attention_heads, seq_len, head_size]
114
+ # inv_freq_expanded = self.inv_freq[None, :, None].to(torch.bfloat16).expand(position_ids.shape[0], -1, 1)
115
+ # position_ids_expanded = position_ids[:, None, :].to(torch.bfloat16)
116
+ # # Force float32 since bfloat16 loses precision on long contexts
117
+ # # See https://github.com/huggingface/transformers/pull/29285
118
+ # device_type = x.device.type
119
+ # device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
120
+ # with torch.autocast(device_type=device_type, enabled=False):
121
+ # freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
122
+ # emb = torch.cat((freqs, freqs), dim=-1)
123
+ # cos = emb.cos()
124
+ # sin = emb.sin()
125
+ # return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
126
+
127
+ @torch.no_grad()
128
+ def forward(self, x, position_ids):
129
+ # x: [bs, num_attention_heads, seq_len, head_size]
130
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
131
+ position_ids_expanded = position_ids[:, None, :].float()
132
+ # Force float32 since bfloat16 loses precision on long contexts
133
+ # See https://github.com/huggingface/transformers/pull/29285
134
+ device_type = x.device.type
135
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
136
+ with torch.autocast(device_type=device_type, enabled=False):
137
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
138
+ emb = torch.cat((freqs, freqs), dim=-1)
139
+ cos = emb.cos()
140
+ sin = emb.sin()
141
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
142
+
143
+
144
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
145
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
146
+
147
+ def forward(self, x, position_ids):
148
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
149
+ position_ids = position_ids.float() / self.scaling_factor
150
+ cos, sin = super().forward(x, position_ids)
151
+ return cos, sin
152
+
153
+
154
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
155
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
156
+
157
+ def forward(self, x, position_ids):
158
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
159
+ seq_len = torch.max(position_ids) + 1
160
+ if seq_len > self.max_position_embeddings:
161
+ base = self.base * (
162
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
163
+ ) ** (self.dim / (self.dim - 2))
164
+ inv_freq = 1.0 / (
165
+ base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
166
+ )
167
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
168
+
169
+ cos, sin = super().forward(x, position_ids)
170
+ return cos, sin
171
+
172
+
173
+ def rotate_half(x):
174
+ """Rotates half the hidden dims of the input."""
175
+ x1 = x[..., : x.shape[-1] // 2]
176
+ x2 = x[..., x.shape[-1] // 2 :]
177
+ return torch.cat((-x2, x1), dim=-1)
178
+
179
+
180
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
181
+ """Applies Rotary Position Embedding to the query and key tensors.
182
+
183
+ Args:
184
+ q (`torch.Tensor`): The query tensor.
185
+ k (`torch.Tensor`): The key tensor.
186
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
187
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
188
+ position_ids (`torch.Tensor`, *optional*):
189
+ Deprecated and unused.
190
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
191
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
192
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
193
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
194
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
195
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
196
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
197
+ Returns:
198
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
199
+ """
200
+ cos = cos.unsqueeze(unsqueeze_dim)
201
+ sin = sin.unsqueeze(unsqueeze_dim)
202
+ q_embed = (q * cos) + (rotate_half(q) * sin)
203
+ k_embed = (k * cos) + (rotate_half(k) * sin)
204
+ return q_embed, k_embed
205
+
206
+
207
+ class LlamaMLP(nn.Module):
208
+ def __init__(self, config):
209
+ super().__init__()
210
+ self.config = config
211
+ self.hidden_size = config.hidden_size
212
+ self.intermediate_size = config.intermediate_size
213
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
214
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
215
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
216
+ self.act_fn = ACT2FN[config.hidden_act]
217
+
218
+ def forward(self, x):
219
+ if self.config.pretraining_tp > 1:
220
+ slice = self.intermediate_size // self.config.pretraining_tp
221
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
222
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
223
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
224
+
225
+ gate_proj = torch.cat(
226
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
227
+ )
228
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
229
+
230
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
231
+ down_proj = [
232
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
233
+ ]
234
+ down_proj = sum(down_proj)
235
+ else:
236
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
237
+
238
+ return down_proj
239
+
240
+
241
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
242
+ """
243
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
244
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
245
+ """
246
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
247
+ if n_rep == 1:
248
+ return hidden_states
249
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
250
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
251
+
252
+
253
+ class LlamaAttention(nn.Module):
254
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
255
+
256
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
257
+ super().__init__()
258
+ self.config = config
259
+ self.layer_idx = layer_idx
260
+ if layer_idx is None:
261
+ logger.warning_once(
262
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
263
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
264
+ "when creating this class."
265
+ )
266
+
267
+ self.attention_dropout = config.attention_dropout
268
+ self.hidden_size = config.hidden_size
269
+ self.num_heads = config.num_attention_heads
270
+ self.head_dim = self.hidden_size // self.num_heads
271
+ self.num_key_value_heads = config.num_key_value_heads
272
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
273
+ self.max_position_embeddings = config.max_position_embeddings
274
+ self.rope_theta = config.rope_theta
275
+ self.is_causal = True
276
+
277
+ if (self.head_dim * self.num_heads) != self.hidden_size:
278
+ raise ValueError(
279
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
280
+ f" and `num_heads`: {self.num_heads})."
281
+ )
282
+
283
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
284
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
285
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
286
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
287
+ self._init_rope()
288
+
289
+ def _init_rope(self):
290
+ if self.config.rope_scaling is None:
291
+ self.rotary_emb = LlamaRotaryEmbedding(
292
+ self.head_dim,
293
+ max_position_embeddings=self.max_position_embeddings,
294
+ base=self.rope_theta,
295
+ )
296
+ else:
297
+ scaling_type = self.config.rope_scaling["type"]
298
+ scaling_factor = self.config.rope_scaling["factor"]
299
+ if scaling_type == "linear":
300
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
301
+ self.head_dim,
302
+ max_position_embeddings=self.max_position_embeddings,
303
+ scaling_factor=scaling_factor,
304
+ base=self.rope_theta,
305
+ )
306
+ elif scaling_type == "dynamic":
307
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
308
+ self.head_dim,
309
+ max_position_embeddings=self.max_position_embeddings,
310
+ scaling_factor=scaling_factor,
311
+ base=self.rope_theta,
312
+ )
313
+ else:
314
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
315
+
316
+ def forward(
317
+ self,
318
+ hidden_states: torch.Tensor,
319
+ attention_mask: Optional[torch.Tensor] = None,
320
+ position_ids: Optional[torch.LongTensor] = None,
321
+ past_key_value: Optional[Cache] = None,
322
+ output_attentions: bool = False,
323
+ use_cache: bool = False,
324
+ cache_position: Optional[torch.LongTensor] = None,
325
+ **kwargs,
326
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
327
+ bsz, q_len, _ = hidden_states.size()
328
+
329
+ if self.config.pretraining_tp > 1:
330
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
331
+ query_slices = self.q_proj.weight.split(
332
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
333
+ )
334
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
335
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
336
+
337
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
338
+ query_states = torch.cat(query_states, dim=-1)
339
+
340
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
341
+ key_states = torch.cat(key_states, dim=-1)
342
+
343
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
344
+ value_states = torch.cat(value_states, dim=-1)
345
+
346
+ else:
347
+ query_states = self.q_proj(hidden_states)
348
+ key_states = self.k_proj(hidden_states)
349
+ value_states = self.v_proj(hidden_states)
350
+
351
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
352
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
353
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
354
+
355
+ cos, sin = self.rotary_emb(value_states, position_ids)
356
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
357
+
358
+ if past_key_value is not None:
359
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
360
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
361
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
362
+
363
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
364
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
365
+
366
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
367
+
368
+ if attention_mask is not None: # no matter the length, we just slice it
369
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
370
+ attn_weights = attn_weights + causal_mask
371
+
372
+ # upcast attention to fp32
373
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
374
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
375
+ attn_output = torch.matmul(attn_weights, value_states)
376
+
377
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
378
+ raise ValueError(
379
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
380
+ f" {attn_output.size()}"
381
+ )
382
+
383
+ attn_output = attn_output.transpose(1, 2).contiguous()
384
+
385
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
386
+
387
+ if self.config.pretraining_tp > 1:
388
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
389
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
390
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
391
+ else:
392
+ attn_output = self.o_proj(attn_output)
393
+
394
+ if not output_attentions:
395
+ attn_weights = None
396
+
397
+ return attn_output, attn_weights, past_key_value
398
+
399
+
400
+ class LlamaFlashAttention2(LlamaAttention):
401
+ """
402
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
403
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
404
+ flash attention and deal with padding tokens in case the input contains any of them.
405
+ """
406
+
407
+ def __init__(self, *args, **kwargs):
408
+ super().__init__(*args, **kwargs)
409
+
410
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
411
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
412
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
413
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
414
+
415
+ def forward(
416
+ self,
417
+ hidden_states: torch.Tensor,
418
+ attention_mask: Optional[torch.LongTensor] = None,
419
+ position_ids: Optional[torch.LongTensor] = None,
420
+ past_key_value: Optional[Cache] = None,
421
+ output_attentions: bool = False,
422
+ use_cache: bool = False,
423
+ cache_position: Optional[torch.LongTensor] = None,
424
+ **kwargs,
425
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
426
+ if isinstance(past_key_value, StaticCache):
427
+ raise ValueError(
428
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
429
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
430
+ )
431
+
432
+ output_attentions = False
433
+
434
+ bsz, q_len, _ = hidden_states.size()
435
+
436
+ query_states = self.q_proj(hidden_states)
437
+ key_states = self.k_proj(hidden_states)
438
+ value_states = self.v_proj(hidden_states)
439
+
440
+ # Flash attention requires the input to have the shape
441
+ # batch_size x seq_length x head_dim x hidden_dim
442
+ # therefore we just need to keep the original shape
443
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
444
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
445
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
446
+
447
+ cos, sin = self.rotary_emb(value_states, position_ids)
448
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
449
+
450
+ if past_key_value is not None:
451
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
452
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
453
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
454
+
455
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
456
+ # to be able to avoid many of these transpose/reshape/view.
457
+ query_states = query_states.transpose(1, 2)
458
+ key_states = key_states.transpose(1, 2)
459
+ value_states = value_states.transpose(1, 2)
460
+
461
+ dropout_rate = self.attention_dropout if self.training else 0.0
462
+
463
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
464
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
465
+ # cast them back in the correct dtype just to be sure everything works as expected.
466
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
467
+ # in fp32. (LlamaRMSNorm handles it correctly)
468
+
469
+ input_dtype = query_states.dtype
470
+ if input_dtype == torch.float32:
471
+ if torch.is_autocast_enabled():
472
+ target_dtype = torch.get_autocast_gpu_dtype()
473
+ # Handle the case where the model is quantized
474
+ elif hasattr(self.config, "_pre_quantization_dtype"):
475
+ target_dtype = self.config._pre_quantization_dtype
476
+ else:
477
+ target_dtype = self.q_proj.weight.dtype
478
+
479
+ logger.warning_once(
480
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
481
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
482
+ f" {target_dtype}."
483
+ )
484
+
485
+ query_states = query_states.to(target_dtype)
486
+ key_states = key_states.to(target_dtype)
487
+ value_states = value_states.to(target_dtype)
488
+
489
+ attn_output = self._flash_attention_forward(
490
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
491
+ )
492
+
493
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
494
+ attn_output = self.o_proj(attn_output)
495
+
496
+ if not output_attentions:
497
+ attn_weights = None
498
+
499
+ return attn_output, attn_weights, past_key_value
500
+
501
+ def _flash_attention_forward(
502
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
503
+ ):
504
+ """
505
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
506
+ first unpad the input, then computes the attention scores and pad the final attention scores.
507
+
508
+ Args:
509
+ query_states (`torch.Tensor`):
510
+ Input query states to be passed to Flash Attention API
511
+ key_states (`torch.Tensor`):
512
+ Input key states to be passed to Flash Attention API
513
+ value_states (`torch.Tensor`):
514
+ Input value states to be passed to Flash Attention API
515
+ attention_mask (`torch.Tensor`):
516
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
517
+ position of padding tokens and 1 for the position of non-padding tokens.
518
+ dropout (`float`):
519
+ Attention dropout
520
+ softmax_scale (`float`, *optional*):
521
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
522
+ """
523
+ if not self._flash_attn_uses_top_left_mask:
524
+ causal = self.is_causal
525
+ else:
526
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
527
+ causal = self.is_causal and query_length != 1
528
+
529
+ # Contains at least one padding token in the sequence
530
+ if attention_mask is not None:
531
+ batch_size = query_states.shape[0]
532
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
533
+ query_states, key_states, value_states, attention_mask, query_length
534
+ )
535
+
536
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
537
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
538
+
539
+ attn_output_unpad = flash_attn_varlen_func(
540
+ query_states,
541
+ key_states,
542
+ value_states,
543
+ cu_seqlens_q=cu_seqlens_q,
544
+ cu_seqlens_k=cu_seqlens_k,
545
+ max_seqlen_q=max_seqlen_in_batch_q,
546
+ max_seqlen_k=max_seqlen_in_batch_k,
547
+ dropout_p=dropout,
548
+ softmax_scale=softmax_scale,
549
+ causal=causal,
550
+ )
551
+
552
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
553
+ else:
554
+ attn_output = flash_attn_func(
555
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
556
+ )
557
+
558
+ return attn_output
559
+
560
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
561
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
562
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
563
+
564
+ key_layer = index_first_axis(
565
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
566
+ )
567
+ value_layer = index_first_axis(
568
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ if query_length == kv_seq_len:
571
+ query_layer = index_first_axis(
572
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
573
+ )
574
+ cu_seqlens_q = cu_seqlens_k
575
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
576
+ indices_q = indices_k
577
+ elif query_length == 1:
578
+ max_seqlen_in_batch_q = 1
579
+ cu_seqlens_q = torch.arange(
580
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
581
+ ) # There is a memcpy here, that is very bad.
582
+ indices_q = cu_seqlens_q[:-1]
583
+ query_layer = query_layer.squeeze(1)
584
+ else:
585
+ # The -q_len: slice assumes left padding.
586
+ attention_mask = attention_mask[:, -query_length:]
587
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
588
+
589
+ return (
590
+ query_layer,
591
+ key_layer,
592
+ value_layer,
593
+ indices_q,
594
+ (cu_seqlens_q, cu_seqlens_k),
595
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
596
+ )
597
+
598
+
599
+ class LlamaSdpaAttention(LlamaAttention):
600
+ """
601
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
602
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
603
+ SDPA API.
604
+ """
605
+
606
+ # Adapted from LlamaAttention.forward
607
+ def forward(
608
+ self,
609
+ hidden_states: torch.Tensor,
610
+ attention_mask: Optional[torch.Tensor] = None,
611
+ position_ids: Optional[torch.LongTensor] = None,
612
+ past_key_value: Optional[Cache] = None,
613
+ output_attentions: bool = False,
614
+ use_cache: bool = False,
615
+ cache_position: Optional[torch.LongTensor] = None,
616
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
617
+ if output_attentions:
618
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
619
+ logger.warning_once(
620
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
621
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
622
+ )
623
+ return super().forward(
624
+ hidden_states=hidden_states,
625
+ attention_mask=attention_mask,
626
+ position_ids=position_ids,
627
+ past_key_value=past_key_value,
628
+ output_attentions=output_attentions,
629
+ use_cache=use_cache,
630
+ cache_position=cache_position,
631
+ )
632
+
633
+ bsz, q_len, _ = hidden_states.size()
634
+
635
+ query_states = self.q_proj(hidden_states)
636
+ key_states = self.k_proj(hidden_states)
637
+ value_states = self.v_proj(hidden_states)
638
+
639
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
640
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
641
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
642
+
643
+ cos, sin = self.rotary_emb(value_states, position_ids)
644
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
645
+
646
+ if past_key_value is not None:
647
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
648
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
649
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
650
+
651
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
652
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
653
+ causal_mask = attention_mask
654
+ if attention_mask is not None:
655
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
656
+
657
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
658
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
659
+ if query_states.device.type == "cuda" and causal_mask is not None:
660
+ query_states = query_states.contiguous()
661
+ key_states = key_states.contiguous()
662
+ value_states = value_states.contiguous()
663
+
664
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an
665
+ # inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True`
666
+ is_causal = True if causal_mask is None and q_len > 1 else False
667
+
668
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
669
+ query_states,
670
+ key_states,
671
+ value_states,
672
+ attn_mask=causal_mask,
673
+ dropout_p=self.attention_dropout if self.training else 0.0,
674
+ is_causal=is_causal,
675
+ )
676
+
677
+ attn_output = attn_output.transpose(1, 2).contiguous()
678
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
679
+
680
+ attn_output = self.o_proj(attn_output)
681
+
682
+ return attn_output, None, past_key_value
683
+
684
+
685
+ LLAMA_ATTENTION_CLASSES = {
686
+ "eager": LlamaAttention,
687
+ "flash_attention_2": LlamaFlashAttention2,
688
+ "sdpa": LlamaSdpaAttention,
689
+ }
690
+
691
+
692
+ class LlamaDecoderLayer(nn.Module):
693
+ def __init__(self, config: LlamaConfig, layer_idx: int):
694
+ super().__init__()
695
+ self.hidden_size = config.hidden_size
696
+
697
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
698
+
699
+ self.mlp = LlamaMLP(config)
700
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
701
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
702
+
703
+ def forward(
704
+ self,
705
+ hidden_states: torch.Tensor,
706
+ attention_mask: Optional[torch.Tensor] = None,
707
+ position_ids: Optional[torch.LongTensor] = None,
708
+ past_key_value: Optional[Cache] = None,
709
+ output_attentions: Optional[bool] = False,
710
+ use_cache: Optional[bool] = False,
711
+ cache_position: Optional[torch.LongTensor] = None,
712
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
713
+ """
714
+ Args:
715
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
716
+ attention_mask (`torch.FloatTensor`, *optional*):
717
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
718
+ query_sequence_length, key_sequence_length)` if default attention is used.
719
+ output_attentions (`bool`, *optional*):
720
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
721
+ returned tensors for more detail.
722
+ use_cache (`bool`, *optional*):
723
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
724
+ (see `past_key_values`).
725
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
726
+ """
727
+ residual = hidden_states
728
+ hidden_states = self.input_layernorm(hidden_states)
729
+
730
+ # Self Attention
731
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
732
+ hidden_states=hidden_states,
733
+ attention_mask=attention_mask,
734
+ position_ids=position_ids,
735
+ past_key_value=past_key_value,
736
+ output_attentions=output_attentions,
737
+ use_cache=use_cache,
738
+ cache_position=cache_position,
739
+ )
740
+ hidden_states = residual + hidden_states
741
+
742
+ # Fully Connected
743
+ residual = hidden_states
744
+ hidden_states = self.post_attention_layernorm(hidden_states)
745
+ hidden_states = self.mlp(hidden_states)
746
+ hidden_states = residual + hidden_states
747
+ outputs = (hidden_states,)
748
+
749
+ if output_attentions:
750
+ outputs += (self_attn_weights,)
751
+
752
+ if use_cache:
753
+ outputs += (present_key_value,)
754
+
755
+ return outputs
756
+
757
+
758
+ LLAMA_START_DOCSTRING = r"""
759
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
760
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
761
+ etc.)
762
+
763
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
764
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
765
+ and behavior.
766
+
767
+ Parameters:
768
+ config ([`LlamaConfig`]):
769
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
770
+ load the weights associated with the model, only the configuration. Check out the
771
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
772
+ """
773
+
774
+
775
+ @add_start_docstrings(
776
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
777
+ LLAMA_START_DOCSTRING,
778
+ )
779
+ class LlamaPreTrainedModel(PreTrainedModel):
780
+ config_class = LlamaConfig
781
+ base_model_prefix = "model"
782
+ supports_gradient_checkpointing = True
783
+ _no_split_modules = ["LlamaDecoderLayer"]
784
+ _skip_keys_device_placement = ["past_key_values"]
785
+ _supports_flash_attn_2 = True
786
+ _supports_sdpa = True
787
+ _supports_cache_class = True
788
+ _supports_static_cache = True
789
+
790
+ def _init_weights(self, module):
791
+ std = self.config.initializer_range
792
+ if isinstance(module, nn.Linear):
793
+ module.weight.data.normal_(mean=0.0, std=std)
794
+ if module.bias is not None:
795
+ module.bias.data.zero_()
796
+ elif isinstance(module, nn.Embedding):
797
+ module.weight.data.normal_(mean=0.0, std=std)
798
+ if module.padding_idx is not None:
799
+ module.weight.data[module.padding_idx].zero_()
800
+
801
+
802
+ LLAMA_INPUTS_DOCSTRING = r"""
803
+ Args:
804
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
805
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
806
+ it.
807
+
808
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
809
+ [`PreTrainedTokenizer.__call__`] for details.
810
+
811
+ [What are input IDs?](../glossary#input-ids)
812
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
813
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
814
+
815
+ - 1 for tokens that are **not masked**,
816
+ - 0 for tokens that are **masked**.
817
+
818
+ [What are attention masks?](../glossary#attention-mask)
819
+
820
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
821
+ [`PreTrainedTokenizer.__call__`] for details.
822
+
823
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
824
+ `past_key_values`).
825
+
826
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
827
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
828
+ information on the default strategy.
829
+
830
+ - 1 indicates the head is **not masked**,
831
+ - 0 indicates the head is **masked**.
832
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
833
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
834
+ config.n_positions - 1]`.
835
+
836
+ [What are position IDs?](../glossary#position-ids)
837
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
838
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
839
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
840
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
841
+
842
+ Two formats are allowed:
843
+ - a [`~cache_utils.Cache`] instance;
844
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
845
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
846
+ cache format.
847
+
848
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
849
+ legacy cache format will be returned.
850
+
851
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
852
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
853
+ of shape `(batch_size, sequence_length)`.
854
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
855
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
856
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
857
+ model's internal embedding lookup matrix.
858
+ use_cache (`bool`, *optional*):
859
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
860
+ `past_key_values`).
861
+ output_attentions (`bool`, *optional*):
862
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
863
+ tensors for more detail.
864
+ output_hidden_states (`bool`, *optional*):
865
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
866
+ more detail.
867
+ return_dict (`bool`, *optional*):
868
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
869
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
870
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
871
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
872
+ the complete sequence length.
873
+ """
874
+
875
+
876
+ @add_start_docstrings(
877
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
878
+ LLAMA_START_DOCSTRING,
879
+ )
880
+ class LlamaModel(LlamaPreTrainedModel):
881
+ """
882
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
883
+
884
+ Args:
885
+ config: LlamaConfig
886
+ """
887
+
888
+ def __init__(self, config: LlamaConfig):
889
+ super().__init__(config)
890
+ self.padding_idx = config.pad_token_id
891
+ self.vocab_size = config.vocab_size
892
+
893
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
894
+ self.layers = nn.ModuleList(
895
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
896
+ )
897
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
898
+ self.gradient_checkpointing = False
899
+
900
+ # Initialize weights and apply final processing
901
+ self.post_init()
902
+
903
+ def get_input_embeddings(self):
904
+ return self.embed_tokens
905
+
906
+ def set_input_embeddings(self, value):
907
+ self.embed_tokens = value
908
+
909
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
910
+ def forward(
911
+ self,
912
+ input_ids: torch.LongTensor = None,
913
+ attention_mask: Optional[torch.Tensor] = None,
914
+ position_ids: Optional[torch.LongTensor] = None,
915
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
916
+ inputs_embeds: Optional[torch.FloatTensor] = None,
917
+ use_cache: Optional[bool] = None,
918
+ output_attentions: Optional[bool] = None,
919
+ output_hidden_states: Optional[bool] = None,
920
+ return_dict: Optional[bool] = None,
921
+ cache_position: Optional[torch.LongTensor] = None,
922
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
923
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
924
+ output_hidden_states = (
925
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
926
+ )
927
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
928
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
929
+
930
+ if (input_ids is None) ^ (inputs_embeds is not None):
931
+ raise ValueError(
932
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
933
+ )
934
+
935
+ if self.gradient_checkpointing and self.training and use_cache:
936
+ logger.warning_once(
937
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
938
+ )
939
+ use_cache = False
940
+
941
+ if inputs_embeds is None:
942
+ inputs_embeds = self.embed_tokens(input_ids)
943
+
944
+ return_legacy_cache = False
945
+ if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
946
+ return_legacy_cache = True
947
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
948
+
949
+ if cache_position is None:
950
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
951
+ cache_position = torch.arange(
952
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
953
+ )
954
+ if position_ids is None:
955
+ position_ids = cache_position.unsqueeze(0)
956
+
957
+ causal_mask = self._update_causal_mask(
958
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
959
+ )
960
+
961
+ # embed positions
962
+ hidden_states = inputs_embeds
963
+
964
+ # decoder layers
965
+ all_hidden_states = () if output_hidden_states else None
966
+ all_self_attns = () if output_attentions else None
967
+ next_decoder_cache = None
968
+
969
+ for decoder_layer in self.layers:
970
+ if output_hidden_states:
971
+ all_hidden_states += (hidden_states,)
972
+
973
+ if self.gradient_checkpointing and self.training:
974
+ layer_outputs = self._gradient_checkpointing_func(
975
+ decoder_layer.__call__,
976
+ hidden_states,
977
+ causal_mask,
978
+ position_ids,
979
+ past_key_values,
980
+ output_attentions,
981
+ use_cache,
982
+ cache_position,
983
+ )
984
+ else:
985
+ layer_outputs = decoder_layer(
986
+ hidden_states,
987
+ attention_mask=causal_mask,
988
+ position_ids=position_ids,
989
+ past_key_value=past_key_values,
990
+ output_attentions=output_attentions,
991
+ use_cache=use_cache,
992
+ cache_position=cache_position,
993
+ )
994
+
995
+ hidden_states = layer_outputs[0]
996
+
997
+ if use_cache:
998
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
999
+
1000
+ if output_attentions:
1001
+ all_self_attns += (layer_outputs[1],)
1002
+
1003
+ hidden_states = self.norm(hidden_states)
1004
+
1005
+ # add hidden states from the last decoder layer
1006
+ if output_hidden_states:
1007
+ all_hidden_states += (hidden_states,)
1008
+
1009
+ next_cache = next_decoder_cache if use_cache else None
1010
+ if return_legacy_cache:
1011
+ next_cache = next_cache.to_legacy_cache()
1012
+
1013
+ if not return_dict:
1014
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1015
+ return BaseModelOutputWithPast(
1016
+ last_hidden_state=hidden_states,
1017
+ past_key_values=next_cache,
1018
+ hidden_states=all_hidden_states,
1019
+ attentions=all_self_attns,
1020
+ )
1021
+
1022
+ def _update_causal_mask(
1023
+ self,
1024
+ attention_mask: torch.Tensor,
1025
+ input_tensor: torch.Tensor,
1026
+ cache_position: torch.Tensor,
1027
+ past_key_values: Cache,
1028
+ output_attentions: bool,
1029
+ ):
1030
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1031
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1032
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1033
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1034
+
1035
+ if self.config._attn_implementation == "flash_attention_2":
1036
+ if attention_mask is not None and 0.0 in attention_mask:
1037
+ return attention_mask
1038
+ return None
1039
+
1040
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1041
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1042
+ # to infer the attention mask.
1043
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1044
+ using_static_cache = isinstance(past_key_values, StaticCache)
1045
+
1046
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1047
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1048
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1049
+ attention_mask,
1050
+ inputs_embeds=input_tensor,
1051
+ past_key_values_length=past_seen_tokens,
1052
+ is_training=self.training,
1053
+ ):
1054
+ return None
1055
+
1056
+ dtype, device = input_tensor.dtype, input_tensor.device
1057
+ min_dtype = torch.finfo(dtype).min
1058
+ sequence_length = input_tensor.shape[1]
1059
+ if using_static_cache:
1060
+ target_length = past_key_values.get_max_length()
1061
+ else:
1062
+ target_length = (
1063
+ attention_mask.shape[-1]
1064
+ if isinstance(attention_mask, torch.Tensor)
1065
+ else past_seen_tokens + sequence_length + 1
1066
+ )
1067
+
1068
+ if attention_mask is not None and attention_mask.dim() == 4:
1069
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1070
+ if attention_mask.max() != 0:
1071
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1072
+ causal_mask = attention_mask
1073
+ else:
1074
+ causal_mask = torch.full(
1075
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1076
+ )
1077
+ if sequence_length != 1:
1078
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1079
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1080
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1081
+ if attention_mask is not None:
1082
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1083
+ mask_length = attention_mask.shape[-1]
1084
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1085
+ padding_mask = padding_mask == 0
1086
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1087
+ padding_mask, min_dtype
1088
+ )
1089
+ if (
1090
+ self.config._attn_implementation == "sdpa"
1091
+ and attention_mask is not None
1092
+ and attention_mask.device.type == "cuda"
1093
+ and not output_attentions
1094
+ ):
1095
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1096
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1097
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1098
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1099
+
1100
+ return causal_mask
1101
+
1102
+
1103
+ class KangarooForCausalLM(LlamaPreTrainedModel):
1104
+ _tied_weights_keys = ["lm_head.weight"]
1105
+
1106
+ def __init__(self, config):
1107
+ super().__init__(config)
1108
+ self.model = LlamaModel(config)
1109
+ model_name = "EVA02-CLIP-L-14-448"
1110
+ pretrained = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-mtcv/liujiajun18/models/models--QuanSun--EVA-CLIP/snapshots/11afd202f2ae80869d6cef18b1ec775e79bd8d12/EVA02_CLIP_L_psz14_s4B.pt"
1111
+ self.vocab_size = config.vocab_size
1112
+ model, _, preprocess = create_model_and_transforms(model_name, pretrained, force_custom_clip=True)
1113
+ model.text = None
1114
+ model.logit_scale = None
1115
+ self.vision_tower = model.visual
1116
+ self.mm_projector = build_vision_projector(mm_hidden_size=self.vision_tower.num_features, hidden_size=config.hidden_size, projector_type="mlp2x_gelu")
1117
+ self.vocab_size = config.vocab_size
1118
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1119
+
1120
+ hidden_dim = self.vision_tower.num_features
1121
+ self.angle = torch.stack([1 / torch.pow(torch.tensor(10000), torch.tensor(2 * (hid_j // 2) / hidden_dim)) for hid_j in range(hidden_dim)])
1122
+
1123
+ self.patch_shape = self.vision_tower.patch_embed.patch_shape[0]
1124
+ self.adaptive_pooling = torch.nn.Conv3d(in_channels=self.vision_tower.num_features,
1125
+ out_channels=self.vision_tower.num_features,
1126
+ kernel_size=(2, 2, 2),
1127
+ stride=(2, 2, 2),
1128
+ groups=self.vision_tower.num_features)
1129
+
1130
+ # Initialize weights and apply final processing
1131
+ self.post_init()
1132
+
1133
+ def get_input_embeddings(self):
1134
+ return self.model.embed_tokens
1135
+
1136
+ def set_input_embeddings(self, value):
1137
+ self.model.embed_tokens = value
1138
+
1139
+ def get_output_embeddings(self):
1140
+ return self.lm_head
1141
+
1142
+ def set_output_embeddings(self, new_embeddings):
1143
+ self.lm_head = new_embeddings
1144
+
1145
+ def set_decoder(self, decoder):
1146
+ self.model = decoder
1147
+
1148
+ def get_decoder(self):
1149
+ return self.model
1150
+
1151
+ def get_angle(self, position):
1152
+ pos_angle = self.angle.reshape(1, -1).to(position.device) * position.reshape(-1, 1)
1153
+ pos_angle[:, 0::2] = torch.sin(pos_angle[:, 0::2])
1154
+ pos_angle[:, 1::2] = torch.cos(pos_angle[:, 0::2])
1155
+ pos_angle = pos_angle.unsqueeze(1)
1156
+ return pos_angle
1157
+
1158
+ def encode_images(self, images, durations, T):
1159
+ image_features = self.vision_tower(images)
1160
+ pos_angle = self.get_angle(durations)
1161
+ image_features += pos_angle
1162
+
1163
+ image_features = image_features.reshape(-1, T, self.patch_shape, self.patch_shape, image_features.shape[-1])
1164
+ image_features = image_features.permute(0, 4, 1, 2, 3)
1165
+ image_features = self.adaptive_pooling(image_features)
1166
+ image_features = image_features.permute(0, 2, 3, 4, 1)
1167
+ #B, T, P, _, __ = image_features.shape
1168
+ #image_features = image_features.reshape(B, T // 2, 2, P, _, __)
1169
+ #image_features = image_features.mean(dim=2)
1170
+ #image_features = image_features.reshape(B, T // 2, P, _, __)
1171
+ image_features = image_features.reshape(-1, self.patch_shape*self.patch_shape // 4, image_features.shape[-1])
1172
+
1173
+ image_features = self.mm_projector(image_features)
1174
+ return image_features
1175
+
1176
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1177
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1178
+ def forward(
1179
+ self,
1180
+ input_ids: torch.LongTensor = None,
1181
+ attention_mask: Optional[torch.Tensor] = None,
1182
+ position_ids: Optional[torch.LongTensor] = None,
1183
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1184
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1185
+ labels: Optional[torch.LongTensor] = None,
1186
+ use_cache: Optional[bool] = None,
1187
+ output_attentions: Optional[bool] = None,
1188
+ output_hidden_states: Optional[bool] = None,
1189
+ return_dict: Optional[bool] = None,
1190
+ cache_position: Optional[torch.LongTensor] = None,
1191
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1192
+ r"""
1193
+ Args:
1194
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1195
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1196
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1197
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1198
+
1199
+ Returns:
1200
+
1201
+ Example:
1202
+
1203
+ ```python
1204
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1205
+
1206
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1207
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1208
+
1209
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1210
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1211
+
1212
+ >>> # Generate
1213
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1214
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1215
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1216
+ ```"""
1217
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1218
+ output_hidden_states = (
1219
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1220
+ )
1221
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1222
+
1223
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1224
+ outputs = self.model(
1225
+ input_ids=input_ids,
1226
+ attention_mask=attention_mask,
1227
+ position_ids=position_ids,
1228
+ past_key_values=past_key_values,
1229
+ inputs_embeds=inputs_embeds,
1230
+ use_cache=use_cache,
1231
+ output_attentions=output_attentions,
1232
+ output_hidden_states=output_hidden_states,
1233
+ return_dict=return_dict,
1234
+ cache_position=cache_position,
1235
+ )
1236
+
1237
+ hidden_states = outputs[0]
1238
+ if self.config.pretraining_tp > 1:
1239
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1240
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1241
+ logits = torch.cat(logits, dim=-1)
1242
+ else:
1243
+ logits = self.lm_head(hidden_states)
1244
+ logits = logits.float()
1245
+
1246
+ loss = None
1247
+ if labels is not None:
1248
+ # Shift so that tokens < n predict n
1249
+ shift_logits = logits[..., :-1, :].contiguous()
1250
+ shift_labels = labels[..., 1:].contiguous()
1251
+ # Flatten the tokens
1252
+ loss_fct = CrossEntropyLoss()
1253
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1254
+ shift_labels = shift_labels.view(-1)
1255
+ # Enable model parallelism
1256
+ shift_labels = shift_labels.to(shift_logits.device)
1257
+ loss = loss_fct(shift_logits, shift_labels)
1258
+
1259
+ if not return_dict:
1260
+ output = (logits,) + outputs[1:]
1261
+ return (loss,) + output if loss is not None else output
1262
+
1263
+ return CausalLMOutputWithPast(
1264
+ loss=loss,
1265
+ logits=logits,
1266
+ past_key_values=outputs.past_key_values,
1267
+ hidden_states=outputs.hidden_states,
1268
+ attentions=outputs.attentions,
1269
+ )
1270
+
1271
+ def fuse_tokens_and_images(self, input_embeds, X_features, enc_input_ids, keys=['video', 'image']):
1272
+ X_TOKEN_INDEX = {'IMAGE': 128250, 'VIDEO': 128251}
1273
+ new_input_embeds = []
1274
+ cur_X_idx = 0
1275
+ # assert len(X_features) == input_embeds.shape[0] # todo
1276
+ for batch_idx, cur_input_ids in enumerate(enc_input_ids):
1277
+ cur_input_embeds = input_embeds[batch_idx] # s h
1278
+ if (torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0)).sum() == 0:
1279
+ # multimodal LLM, but the current sample is not multimodal
1280
+ # FIXME: this is a hacky fix, for deepspeed zero3 to work
1281
+ half_len = cur_input_ids.shape[0] // 2
1282
+ cur_X_features = X_features[cur_X_idx]
1283
+ cur_input_embeds_1 = cur_input_embeds[:half_len].unsqueeze(1)
1284
+ cur_input_embeds_2 = cur_input_embeds[half_len:].unsqueeze(1)
1285
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_X_features[0:0], cur_input_embeds_2], dim=0)
1286
+ new_input_embeds.append(cur_input_embeds)
1287
+ continue
1288
+ X_token_indices = torch.where(torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0))[0] # 把中间的imgtoken的位置找到
1289
+
1290
+ cur_new_input_embeds = []
1291
+ cur_start = 0
1292
+ while X_token_indices.numel() > 0:
1293
+ cur_X_features = X_features[cur_X_idx].unsqueeze(1)
1294
+ X_token_start = X_token_indices[0]
1295
+
1296
+ cur_new_input_embeds.append(cur_input_embeds[:X_token_start].unsqueeze(1))
1297
+ cur_new_input_embeds.append(cur_X_features)
1298
+ cur_start = X_token_start + 1
1299
+
1300
+ cur_X_idx += 1
1301
+ # update cur_input_ids and cur_input_embeds
1302
+ cur_input_ids = cur_input_ids[cur_start:]
1303
+ cur_input_embeds = cur_input_embeds[cur_start:]
1304
+
1305
+ X_token_indices = torch.where(torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0))[0]
1306
+
1307
+ if cur_input_ids.numel() > 0:
1308
+ cur_new_input_embeds.append(cur_input_embeds.unsqueeze(1))
1309
+
1310
+ cur_new_input_embeds = [x.to(device=enc_input_ids.device) for x in cur_new_input_embeds]
1311
+
1312
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
1313
+ new_input_embeds.append(cur_new_input_embeds)
1314
+
1315
+ if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
1316
+ max_len = max(x.shape[0] for x in new_input_embeds)
1317
+
1318
+ new_input_embeds_align = []
1319
+ for cur_new_embed in new_input_embeds:
1320
+ cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
1321
+ new_input_embeds_align.append(cur_new_embed)
1322
+ new_input_embeds = torch.cat(new_input_embeds_align, dim=0)
1323
+ else:
1324
+ new_input_embeds = torch.cat(new_input_embeds, dim=1)
1325
+
1326
+ return new_input_embeds
1327
+
1328
+ @torch.no_grad()
1329
+ def generate(
1330
+ self,
1331
+ inputs: Optional[torch.Tensor] = None,
1332
+ video: Optional[torch.Tensor] = None,
1333
+ durations: Optional[torch.Tensor] = None,
1334
+ **kwargs,
1335
+ ):
1336
+
1337
+ T, C, H, W = video.shape
1338
+ video = video.reshape(-1, C, H, W)
1339
+ images_features = self.encode_images(video, durations, T)
1340
+ input_embeds = self.model.embed_tokens.weight[inputs]
1341
+ encoder_input = self.fuse_tokens_and_images(input_embeds, images_features, inputs)
1342
+ encoder_input = encoder_input.permute(1, 0, 2)
1343
+ return super().generate(inputs_embeds=encoder_input, **kwargs)
1344
+
1345
+ def prepare_inputs_for_generation(
1346
+ self,
1347
+ input_ids,
1348
+ past_key_values=None,
1349
+ attention_mask=None,
1350
+ inputs_embeds=None,
1351
+ cache_position=None,
1352
+ use_cache=True,
1353
+ **kwargs,
1354
+ ):
1355
+ past_length = 0
1356
+ if past_key_values is not None:
1357
+ if isinstance(past_key_values, Cache):
1358
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1359
+ max_cache_length = (
1360
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1361
+ if past_key_values.get_max_length() is not None
1362
+ else None
1363
+ )
1364
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1365
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1366
+ else:
1367
+ cache_length = past_length = past_key_values[0][0].shape[2]
1368
+ max_cache_length = None
1369
+
1370
+ # Keep only the unprocessed tokens:
1371
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1372
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
1373
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1374
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1375
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1376
+ # input_ids based on the past_length.
1377
+ elif past_length < input_ids.shape[1]:
1378
+ input_ids = input_ids[:, past_length:]
1379
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1380
+
1381
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1382
+ if (
1383
+ max_cache_length is not None
1384
+ and attention_mask is not None
1385
+ and cache_length + input_ids.shape[1] > max_cache_length
1386
+ ):
1387
+ attention_mask = attention_mask[:, -max_cache_length:]
1388
+
1389
+ position_ids = kwargs.get("position_ids", None)
1390
+ if attention_mask is not None and position_ids is None:
1391
+ # create position_ids on the fly for batch generation
1392
+ position_ids = attention_mask.long().cumsum(-1) - 1
1393
+ position_ids.masked_fill_(attention_mask == 0, 1)
1394
+ if past_key_values:
1395
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1396
+
1397
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1398
+ if inputs_embeds is not None and past_key_values is None:
1399
+ model_inputs = {"inputs_embeds": inputs_embeds}
1400
+ else:
1401
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1402
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1403
+ # TODO: use `next_tokens` directly instead.
1404
+ model_inputs = {"input_ids": input_ids.contiguous()}
1405
+
1406
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1407
+ if cache_position is None:
1408
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1409
+ elif use_cache:
1410
+ cache_position = cache_position[-input_length:]
1411
+
1412
+ model_inputs.update(
1413
+ {
1414
+ "position_ids": position_ids,
1415
+ "cache_position": cache_position,
1416
+ "past_key_values": past_key_values,
1417
+ "use_cache": use_cache,
1418
+ "attention_mask": attention_mask,
1419
+ }
1420
+ )
1421
+ return model_inputs
1422
+
1423
+
1424
+ @torch.no_grad()
1425
+ def chat(
1426
+ self,
1427
+ video_path : str,
1428
+ query : str,
1429
+ tokenizer : transformers.PreTrainedTokenizer,
1430
+ num_segments : int = 64,
1431
+ history : str = None,
1432
+ system_prompt_id : int = 0,
1433
+ **kwargs,
1434
+ ):
1435
+ video, durations, input_ids, history = get_input(video_path, num_segments, query, history, tokenizer, system_prompt_id)
1436
+ video = video.to(self.device).to(self.dtype)
1437
+ durations = durations.to(self.device).to(self.dtype)
1438
+ input_ids = input_ids.to(self.device)
1439
+ outputs = self.generate(
1440
+ inputs=input_ids,
1441
+ video=video,
1442
+ durations=durations,
1443
+ **kwargs
1444
+ )
1445
+ pred = tokenizer.decode(outputs[0]).replace("<|eot_id|>", "")
1446
+
1447
+ history = add_pred_to_history(history, pred)
1448
+
1449
+ return pred, history
1450
+
1451
+
1452
+ @staticmethod
1453
+ def _reorder_cache(past_key_values, beam_idx):
1454
+ reordered_past = ()
1455
+ for layer_past in past_key_values:
1456
+ reordered_past += (
1457
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1458
+ )
1459
+ return reordered_past
1460
+
1461
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5137c328134a578c6bc84f65d026058130c6e85c68bd06e953a2987fdc8dd2cc
3
+ size 16717528254