marma commited on
Commit
d69b798
·
2 Parent(s): e40795d 15bce1b

Merge branch 'main' of https://huggingface.co./KBLab/wav2vec2-large-voxrex-swedish into main

Browse files
Files changed (4) hide show
  1. README.md +65 -0
  2. chart_1.svg +0 -0
  3. tokenizer_config.json +1 -1
  4. vocab.json +1 -1
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: sv-SE
3
+ datasets:
4
+ - common_voice
5
+ - NST Swedish ASR Database
6
+ - P4
7
+ metrics:
8
+ - wer
9
+ tags:
10
+ - audio
11
+ - automatic-speech-recognition
12
+ - speech
13
+ license: cc0
14
+ model-index:
15
+ - name: Wav2vec 2.0 large VoxRex Swedish
16
+ results:
17
+ - task:
18
+ name: Speech Recognition
19
+ type: automatic-speech-recognition
20
+ dataset:
21
+ name: Common Voice
22
+ type: common_voice
23
+ args: sv-SE
24
+ metrics:
25
+ - name: Test WER
26
+ type: wer
27
+ value: 9.914
28
+ ---
29
+ # Wav2vec 2.0 large VoxRex Swedish
30
+
31
+ Finetuned version of KBs [VoxRex large](https://huggingface.co/KBLab/wav2vec2-large-voxrex) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **3.617%**. WER for Common Voice test set is **9.914%** directly and **7.77%** with a 4-gram language model.
32
+
33
+ When using this model, make sure that your speech input is sampled at 16kHz.
34
+
35
+ ## Training
36
+ This model has additionally pretrained on 3500h of a mix of Swedish local radio broadcasts, audio books and other audio sources. It has been fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed].
37
+
38
+ ![WER during training](chart_1.svg "WER")
39
+
40
+ ## Usage
41
+ The model can be used directly (without a language model) as follows:
42
+ ```python
43
+ import torch
44
+ import torchaudio
45
+ from datasets import load_dataset
46
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
47
+ test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
48
+ processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish")
49
+ model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish")
50
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
+ # Preprocessing the datasets.
52
+ # We need to read the aduio files as arrays
53
+ def speech_file_to_array_fn(batch):
54
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ return batch
57
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
58
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
+ with torch.no_grad():
60
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
+ predicted_ids = torch.argmax(logits, dim=-1)
62
+ print("Prediction:", processor.batch_decode(predicted_ids))
63
+ print("Reference:", test_dataset["sentence"][:2])
64
+ ```
65
+
chart_1.svg ADDED
tokenizer_config.json CHANGED
@@ -1 +1 @@
1
- {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": true, "word_delimiter_token": "|", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
vocab.json CHANGED
@@ -1 +1 @@
1
- {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, "|": 4, "T": 5, "E": 6, "A": 7, "N": 8, "R": 9, "S": 10, "I": 11, "L": 12, "D": 13, "O": 14, "M": 15, "K": 16, "G": 17, "U": 18, "V": 19, "F": 20, "H": 21, "Ä": 22, "Å": 23, "P": 24, "Ö": 25, "B": 26, "J": 27, "C": 28, "Y": 29, "X": 30, "W": 31, "Z": 32, "É": 33, "Q": 34, "8": 35, "2": 36, "5": 37, "9": 38, "1": 39, "6": 40, "7": 41, "3": 42, "4": 43, "0": 44, "'": 45}
 
1
+ {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "T": 5, "E": 6, "A": 7, "N": 8, "R": 9, "S": 10, "I": 11, "L": 12, "D": 13, "O": 14, "M": 15, "K": 16, "G": 17, "U": 18, "V": 19, "F": 20, "H": 21, "Ä": 22, "Å": 23, "P": 24, "Ö": 25, "B": 26, "J": 27, "C": 28, "Y": 29, "X": 30, "W": 31, "Z": 32, "É": 33, "Q": 34, "8": 35, "2": 36, "5": 37, "9": 38, "1": 39, "6": 40, "7": 41, "3": 42, "4": 43, "0": 44, "'": 45}