--- language: - sv pipeline_tag: automatic-speech-recognition --- ## KB-Whisper Small (Beta) Preliminary checkpoint of the National Library of Sweden's new Whisper models for Swedish. This version is for testing only, it has only trained 40% of the total training time. ### Usage ```python import torch from datasets import load_dataset from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "KBLab/kb-whisper-small-beta" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, use_safetensors=True, cache_dir="cache" ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) generate_kwargs = {"task": "transcribe", "language": "sv"} # Add return_timestamps=True for output with timestamps res = pipe("audio.mp3", chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"}) ```