File size: 1,245 Bytes
9d4f6e6
 
 
 
 
40af4cd
 
4618356
40af4cd
 
 
 
 
 
 
 
 
 
9d4f6e6
40af4cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
language:
- sv
pipeline_tag: automatic-speech-recognition
---
## KB-Whisper Small (Beta)

Preliminary checkpoint of the National Library of Sweden's new Whisper models for Swedish. This version is for testing only, it has only trained 40% of the total training time. 

### Usage

```python
import torch
from datasets import load_dataset
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "KBLab/kb-whisper-small-beta"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, use_safetensors=True, cache_dir="cache"
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    torch_dtype=torch_dtype,
    device=device,
)

generate_kwargs = {"task": "transcribe", "language": "sv"}
# Add return_timestamps=True for output with timestamps
res = pipe("audio.mp3", 
           chunk_length_s=30,
           generate_kwargs={"task": "transcribe", "language": "sv"})
```