--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.9 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4717 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7581 | 1.0 | 56 | 0.7029 | 0.78 | | 0.3942 | 1.99 | 112 | 0.4646 | 0.86 | | 0.3298 | 2.99 | 168 | 0.3861 | 0.88 | | 0.1227 | 4.0 | 225 | 0.4702 | 0.86 | | 0.0774 | 5.0 | 281 | 0.4492 | 0.9 | | 0.0039 | 5.99 | 337 | 0.4607 | 0.9 | | 0.0014 | 6.99 | 393 | 0.5022 | 0.9 | | 0.0022 | 8.0 | 450 | 0.4711 | 0.9 | | 0.0193 | 9.0 | 506 | 0.5226 | 0.86 | | 0.0004 | 9.99 | 562 | 0.6055 | 0.82 | | 0.0003 | 10.99 | 618 | 0.4793 | 0.89 | | 0.0002 | 12.0 | 675 | 0.5052 | 0.9 | | 0.0002 | 13.0 | 731 | 0.4652 | 0.89 | | 0.0001 | 13.99 | 787 | 0.4617 | 0.9 | | 0.0001 | 14.99 | 843 | 0.4653 | 0.9 | | 0.0001 | 16.0 | 900 | 0.4635 | 0.91 | | 0.0001 | 17.0 | 956 | 0.4693 | 0.9 | | 0.0001 | 17.99 | 1012 | 0.4697 | 0.9 | | 0.0001 | 18.99 | 1068 | 0.4715 | 0.9 | | 0.0025 | 19.91 | 1120 | 0.4717 | 0.9 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3