JosephusCheung
commited on
Commit
•
e64ca07
1
Parent(s):
5348a89
Upload evaluate_chatml_mmlu.py
Browse files- eval/evaluate_chatml_mmlu.py +391 -0
eval/evaluate_chatml_mmlu.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
import datasets
|
6 |
+
import torch
|
7 |
+
import re
|
8 |
+
from thefuzz import process
|
9 |
+
from typing import List
|
10 |
+
from tqdm import tqdm
|
11 |
+
from transformers.trainer_utils import set_seed
|
12 |
+
|
13 |
+
'''
|
14 |
+
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
15 |
+
mkdir data/mmlu
|
16 |
+
mv data.tar data/mmlu
|
17 |
+
cd data/mmlu; tar xf data.tar
|
18 |
+
cd ../../
|
19 |
+
|
20 |
+
pip install thefuzz
|
21 |
+
python eval/evaluate_chat_mmlu.py -d data/mmlu/data/
|
22 |
+
'''
|
23 |
+
from typing import Tuple, List, Union, Iterable
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
from transformers import PreTrainedTokenizer
|
29 |
+
from transformers import logging
|
30 |
+
from transformers.generation import LogitsProcessor
|
31 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
32 |
+
HistoryType = List[Tuple[str, str]]
|
33 |
+
TokensType = List[int]
|
34 |
+
BatchTokensType = List[List[int]]
|
35 |
+
|
36 |
+
def make_context(
|
37 |
+
tokenizer: PreTrainedTokenizer,
|
38 |
+
query: str,
|
39 |
+
history: List[Tuple[str, str]] = None,
|
40 |
+
system: str = "",
|
41 |
+
max_window_size: int = 6144,
|
42 |
+
chat_format: str = "chatml",
|
43 |
+
):
|
44 |
+
if history is None:
|
45 |
+
history = []
|
46 |
+
|
47 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
48 |
+
im_start_tokens = [tokenizer.im_start_id]
|
49 |
+
im_end_tokens = [tokenizer.im_end_id]
|
50 |
+
nl_tokens = tokenizer.encode("\n")
|
51 |
+
|
52 |
+
def _tokenize_str(role, content):
|
53 |
+
return f"{role}\n{content}", tokenizer.encode(
|
54 |
+
role
|
55 |
+
) + nl_tokens + tokenizer.encode(content)
|
56 |
+
|
57 |
+
system_text, system_tokens_part = _tokenize_str("system", system)
|
58 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
59 |
+
|
60 |
+
raw_text = ""
|
61 |
+
context_tokens = []
|
62 |
+
|
63 |
+
for turn_query, turn_response in reversed(history):
|
64 |
+
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
65 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
66 |
+
response_text, response_tokens_part = _tokenize_str(
|
67 |
+
"assistant", turn_response
|
68 |
+
)
|
69 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
70 |
+
|
71 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
72 |
+
prev_chat = (
|
73 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
74 |
+
)
|
75 |
+
|
76 |
+
current_context_size = (
|
77 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
78 |
+
)
|
79 |
+
if current_context_size < max_window_size:
|
80 |
+
context_tokens = next_context_tokens + context_tokens
|
81 |
+
raw_text = prev_chat + raw_text
|
82 |
+
else:
|
83 |
+
break
|
84 |
+
|
85 |
+
context_tokens = system_tokens + context_tokens
|
86 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
87 |
+
context_tokens += (
|
88 |
+
nl_tokens
|
89 |
+
+ im_start_tokens
|
90 |
+
+ _tokenize_str("user", query)[1]
|
91 |
+
+ im_end_tokens
|
92 |
+
+ nl_tokens
|
93 |
+
+ im_start_tokens
|
94 |
+
+ tokenizer.encode("assistant")
|
95 |
+
+ nl_tokens
|
96 |
+
)
|
97 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
98 |
+
|
99 |
+
return raw_text, context_tokens
|
100 |
+
|
101 |
+
def chat(
|
102 |
+
model,
|
103 |
+
tokenizer: PreTrainedTokenizer,
|
104 |
+
query: str,
|
105 |
+
history: Optional[HistoryType],
|
106 |
+
system: str = "You are a helpful assistant.",
|
107 |
+
append_history: bool = True
|
108 |
+
) -> Tuple[str, HistoryType]:
|
109 |
+
|
110 |
+
|
111 |
+
if history is None:
|
112 |
+
history = []
|
113 |
+
|
114 |
+
raw_text, context_tokens = make_context(
|
115 |
+
tokenizer,
|
116 |
+
query,
|
117 |
+
history=history,
|
118 |
+
system=system,
|
119 |
+
max_window_size=6144,
|
120 |
+
chat_format = "chatml",
|
121 |
+
)
|
122 |
+
|
123 |
+
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
124 |
+
input_ids = torch.tensor([context_tokens]).cuda()
|
125 |
+
outputs = model.generate(
|
126 |
+
input_ids,
|
127 |
+
stop_words_ids = stop_words_ids,
|
128 |
+
return_dict_in_generate = False,
|
129 |
+
)
|
130 |
+
|
131 |
+
response = decode_tokens(
|
132 |
+
outputs[0],
|
133 |
+
tokenizer,
|
134 |
+
raw_text_len=len(raw_text),
|
135 |
+
context_length=len(context_tokens),
|
136 |
+
chat_format='chatml',
|
137 |
+
verbose=False,
|
138 |
+
)
|
139 |
+
|
140 |
+
if append_history:
|
141 |
+
history.append((query, response))
|
142 |
+
|
143 |
+
return response, history
|
144 |
+
|
145 |
+
def decode_tokens(
|
146 |
+
tokens: Union[torch.LongTensor, TokensType],
|
147 |
+
tokenizer: PreTrainedTokenizer,
|
148 |
+
raw_text_len: int,
|
149 |
+
context_length: int,
|
150 |
+
chat_format: str = "chatml",
|
151 |
+
verbose: bool = False,
|
152 |
+
return_end_reason: bool = False,
|
153 |
+
) -> str:
|
154 |
+
if torch.is_tensor(tokens):
|
155 |
+
tokens = tokens.cpu().numpy().tolist()
|
156 |
+
|
157 |
+
|
158 |
+
return _decode_chatml(
|
159 |
+
tokens,
|
160 |
+
stop_words=[],
|
161 |
+
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
162 |
+
tokenizer=tokenizer,
|
163 |
+
raw_text_len=raw_text_len,
|
164 |
+
context_length=context_length,
|
165 |
+
verbose=verbose,
|
166 |
+
return_end_reason=return_end_reason,
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
def _decode_chatml(
|
171 |
+
tokens: List[int],
|
172 |
+
*,
|
173 |
+
stop_words: List[str],
|
174 |
+
eod_token_ids: List[int],
|
175 |
+
tokenizer: PreTrainedTokenizer,
|
176 |
+
raw_text_len: int,
|
177 |
+
context_length: int,
|
178 |
+
verbose: bool = False,
|
179 |
+
return_end_reason: bool = False,
|
180 |
+
chat_format = "chatml",
|
181 |
+
):
|
182 |
+
end_reason = f"Gen length {len(tokens)}"
|
183 |
+
eod_token_idx = context_length
|
184 |
+
for eod_token_idx in range(context_length, len(tokens)):
|
185 |
+
if tokens[eod_token_idx] in eod_token_ids:
|
186 |
+
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
187 |
+
break
|
188 |
+
|
189 |
+
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
|
190 |
+
if verbose:
|
191 |
+
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
|
192 |
+
print("\nRaw Generate:", trim_decode_tokens)
|
193 |
+
print("\nEnd Reason:", end_reason)
|
194 |
+
for stop_word in stop_words:
|
195 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
196 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
197 |
+
if verbose:
|
198 |
+
print("\nGenerate:", trim_decode_tokens)
|
199 |
+
|
200 |
+
if return_end_reason:
|
201 |
+
return trim_decode_tokens, end_reason
|
202 |
+
else:
|
203 |
+
return trim_decode_tokens
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
def load_models_tokenizer(args):
|
208 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
209 |
+
from transformers.generation import GenerationConfig
|
210 |
+
|
211 |
+
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
212 |
+
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
|
213 |
+
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
214 |
+
model.generation_config.do_sample = False # use greedy decoding
|
215 |
+
return model, tokenizer
|
216 |
+
|
217 |
+
|
218 |
+
def format_example(line):
|
219 |
+
example = 'The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n' + line['question'] + "\n"
|
220 |
+
for choice in choices:
|
221 |
+
example += f'{choice}. {line[f"{choice}"]}\n'
|
222 |
+
return example
|
223 |
+
|
224 |
+
|
225 |
+
def process_before_extraction(gen, choice_dict):
|
226 |
+
# replace the choice by letter in the generated sentence
|
227 |
+
# from longest one to shortest one
|
228 |
+
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
|
229 |
+
pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE)
|
230 |
+
gen = pattern.sub(key, gen)
|
231 |
+
return gen
|
232 |
+
|
233 |
+
def extract_choice(gen, choice_list):
|
234 |
+
# answer is A | choice is A | choose A
|
235 |
+
res = re.search(r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b", gen)
|
236 |
+
|
237 |
+
# A is correct | A is right
|
238 |
+
if res is None:
|
239 |
+
res = re.search(r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b", gen)
|
240 |
+
|
241 |
+
# straight answer: A
|
242 |
+
if res is None:
|
243 |
+
res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen)
|
244 |
+
|
245 |
+
# simply extract the first appearred letter
|
246 |
+
if res is None:
|
247 |
+
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
|
248 |
+
|
249 |
+
if res is None:
|
250 |
+
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
|
251 |
+
else:
|
252 |
+
return res.group(1)
|
253 |
+
|
254 |
+
def extract_answer(response, row):
|
255 |
+
gen = process_before_extraction(response, {choice: row[choice] for choice in choices})
|
256 |
+
pred = extract_choice(gen, [row[choice] for choice in choices])
|
257 |
+
return pred
|
258 |
+
|
259 |
+
@torch.no_grad()
|
260 |
+
def eval_subject(
|
261 |
+
model,
|
262 |
+
tokenizer,
|
263 |
+
subject_name,
|
264 |
+
test_df,
|
265 |
+
save_result_dir=None,
|
266 |
+
overwrite=False,
|
267 |
+
**kwargs
|
268 |
+
):
|
269 |
+
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv')
|
270 |
+
if not overwrite and os.path.exists(result_path):
|
271 |
+
print(f"{result_path} existed, skip!")
|
272 |
+
score = []
|
273 |
+
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()):
|
274 |
+
# pred = extract_answer(resultrow['model_response'], datarow)
|
275 |
+
pred = resultrow['model_output']
|
276 |
+
correct = 1 if pred == datarow['answer'] else 0
|
277 |
+
score.append(correct)
|
278 |
+
return score
|
279 |
+
|
280 |
+
result = []
|
281 |
+
score = []
|
282 |
+
|
283 |
+
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
284 |
+
question = format_example(row)
|
285 |
+
|
286 |
+
response, history = chat(
|
287 |
+
model,
|
288 |
+
tokenizer,
|
289 |
+
question,
|
290 |
+
history=None,
|
291 |
+
)
|
292 |
+
print(question)
|
293 |
+
print(response)
|
294 |
+
pred = extract_answer(response, row)
|
295 |
+
print(pred)
|
296 |
+
print("======================")
|
297 |
+
|
298 |
+
if 'answer' in row:
|
299 |
+
correct = 1 if pred == row['answer'] else 0
|
300 |
+
score.append(correct)
|
301 |
+
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
|
302 |
+
result.append(pred)
|
303 |
+
|
304 |
+
if save_result_dir:
|
305 |
+
test_df['model_output'] = result
|
306 |
+
test_df['model_response'] = response
|
307 |
+
if score:
|
308 |
+
test_df["correctness"] = score
|
309 |
+
os.makedirs(save_result_dir, exist_ok=True)
|
310 |
+
test_df.to_csv(os.path.join(
|
311 |
+
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)
|
312 |
+
|
313 |
+
return score
|
314 |
+
|
315 |
+
|
316 |
+
def cal_mmlu(res):
|
317 |
+
acc_sum_dict = dict()
|
318 |
+
acc_norm_sum_dict = dict()
|
319 |
+
cnt_dict = dict()
|
320 |
+
acc_sum = 0.
|
321 |
+
cnt = 0
|
322 |
+
hard_cnt = 0
|
323 |
+
hard_acc_sum = 0.
|
324 |
+
|
325 |
+
for class_ in TASK_NAME_MAPPING.keys():
|
326 |
+
acc_sum_dict[class_] = 0.
|
327 |
+
acc_norm_sum_dict[class_] = 0.
|
328 |
+
cnt_dict[class_] = 0.
|
329 |
+
|
330 |
+
for tt in TASK_NAME_MAPPING[class_]:
|
331 |
+
acc_sum += sum(res[tt])
|
332 |
+
cnt += len(res[tt])
|
333 |
+
|
334 |
+
acc_sum_dict[class_] += sum(res[tt])
|
335 |
+
cnt_dict[class_] += len(res[tt])
|
336 |
+
|
337 |
+
print('\n\n\n')
|
338 |
+
for k in TASK_NAME_MAPPING.keys():
|
339 |
+
if k in cnt_dict:
|
340 |
+
print('%s ACC: %.2f ' % (
|
341 |
+
k, acc_sum_dict[k] * 100 / cnt_dict[k]))
|
342 |
+
print('AVERAGE ACC:%.2f ' % (acc_sum *100 / cnt))
|
343 |
+
|
344 |
+
|
345 |
+
def main(args):
|
346 |
+
print("loading model weights")
|
347 |
+
if args.checkpoint_path is not None:
|
348 |
+
model, tokenizer = load_models_tokenizer(args)
|
349 |
+
else:
|
350 |
+
model, tokenizer = None, None
|
351 |
+
print("model loaded")
|
352 |
+
|
353 |
+
dev_result = {}
|
354 |
+
for subject_name in tqdm(SUBJECTS):
|
355 |
+
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
|
356 |
+
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
|
357 |
+
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
|
358 |
+
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
|
359 |
+
# dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
|
360 |
+
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer'])
|
361 |
+
|
362 |
+
score = eval_subject(model, tokenizer, subject_name, test_df, save_result_dir=f"outs_chat/mmlu_eval_result", overwrite=args.overwrite)
|
363 |
+
dev_result[subject_name] = score
|
364 |
+
cal_mmlu(dev_result)
|
365 |
+
|
366 |
+
|
367 |
+
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'],
|
368 |
+
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'],
|
369 |
+
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'],
|
370 |
+
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']}
|
371 |
+
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
|
372 |
+
choices = ["A", "B", "C", "D"]
|
373 |
+
|
374 |
+
if __name__ == '__main__':
|
375 |
+
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
|
376 |
+
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
|
377 |
+
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
|
378 |
+
|
379 |
+
"""Provide extra arguments required for tasks."""
|
380 |
+
group = parser.add_argument_group(title='Evaluation options')
|
381 |
+
group.add_argument('-d', '--eval_data_path', type=str,
|
382 |
+
help='Path to eval data')
|
383 |
+
group.add_argument("--debug", action='store_true', default=False,
|
384 |
+
help='Print infos.')
|
385 |
+
group.add_argument("--overwrite", action='store_true', default=False,
|
386 |
+
help='Overwrite existed results')
|
387 |
+
|
388 |
+
args = parser.parse_args()
|
389 |
+
set_seed(args.seed)
|
390 |
+
|
391 |
+
main(args)
|