--- tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1218 - 0x0dad0/nous_nous_v2_0 base_model: - OpenPipe/mistral-ft-optimized-1218 - 0x0dad0/nous_nous_v2_0 --- # InnerILLM-Ox0dad0-nous-nous-v2.0-7B-slerp InnerILLM-Ox0dad0-nous-nous-v2.0-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co./OpenPipe/mistral-ft-optimized-1218) * [0x0dad0/nous_nous_v2_0](https://huggingface.co./0x0dad0/nous_nous_v2_0) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: 0x0dad0/nous_nous_v2_0 layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "InnerI/InnerILLM-Ox0dad0-nous-nous-v2.0-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```