# -*- encoding: utf-8 -*- # File: audio.py # Description: None from typing import Iterable, List, Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor class LayerNorm(nn.LayerNorm): def forward(self, x: Tensor) -> Tensor: return super().forward(x).type(x.dtype) class Linear(nn.Linear): def forward(self, x: Tensor) -> Tensor: return F.linear( x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype), ) class Conv1d(nn.Conv1d): def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: return super()._conv_forward(x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)) def sinusoids(length, channels, max_timescale=10000): """Returns sinusoids for positional embedding""" assert channels % 2 == 0 log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) class MultiHeadAttention(nn.Module): def __init__(self, n_state: int, n_head: int): super().__init__() self.n_head = n_head self.query = Linear(n_state, n_state) self.key = Linear(n_state, n_state, bias=False) self.value = Linear(n_state, n_state) self.out = Linear(n_state, n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, ): q = self.query(x) if kv_cache is None or xa is None or self.key not in kv_cache: # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; # otherwise, perform key/value projections for self- or cross-attention as usual. k = self.key(x if xa is None else xa) v = self.value(x if xa is None else xa) else: # for cross-attention, calculate keys and values once and reuse in subsequent calls. k = kv_cache[self.key] v = kv_cache[self.value] wv, qk = self.qkv_attention(q, k, v, mask) return self.out(wv), qk def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None): n_batch, n_ctx, n_state = q.shape scale = (n_state // self.n_head) ** -0.25 q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) qk = q @ k if mask is not None: qk += mask w = F.softmax(qk, dim=-1).to(q.dtype) return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() class ResidualAttentionBlock(nn.Module): def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): super().__init__() self.attn = MultiHeadAttention(n_state, n_head) self.attn_ln = LayerNorm(n_state) self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None n_mlp = n_state * 4 self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)) self.mlp_ln = LayerNorm(n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, ): x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0] if self.cross_attn: x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0] x = x + self.mlp(self.mlp_ln(x)) return x class AudioEncoder(nn.Module): def __init__( self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, output_dim: int = 512, avg_pool: bool = True, add_audio_bos_eos_token: bool = True, **kwargs, ): super().__init__() self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] ) self.ln_post = LayerNorm(n_state) if avg_pool: self.avg_pooler = nn.AvgPool1d(2, stride=2) else: self.avg_pooler = None self.proj = nn.Linear(n_state, output_dim) if add_audio_bos_eos_token: self.audio_bos_eos_token = nn.Embedding(2, output_dim) else: self.audio_bos_eos_token = None self.output_dim = output_dim self.n_head = n_head def forward(self, x: Tensor, padding_mask: Tensor = None, audio_lengths: Tensor = None): """ x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) the mel spectrogram of the audio """ x = x.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device) if audio_lengths is not None: input_mel_len = audio_lengths[:, 0] * 2 max_mel_len_in_batch = input_mel_len.max() x = x[:, :, :max_mel_len_in_batch] x = F.gelu(self.conv1(x)) x = F.gelu(self.conv2(x)) x = x.permute(0, 2, 1) # B, L, D bsz = x.size(0) src_len = x.size(1) self.input_positional_embedding = self.positional_embedding[:src_len] assert ( x.shape[1:] == self.input_positional_embedding.shape ), f"incorrect audio shape: {x.shape[1:], self.input_positional_embedding.shape}" x = (x + self.input_positional_embedding).to(x.dtype) if padding_mask is not None: padding_mask = padding_mask.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device) batch_src_len = padding_mask.size(1) x = x[:, :batch_src_len, :] padding_mask = padding_mask.view(bsz, -1, batch_src_len) padding_mask_ = padding_mask.all(1) x[padding_mask_] = 0 key_padding_mask = ( padding_mask_.view(bsz, 1, 1, batch_src_len) .expand(-1, self.n_head, -1, -1) .reshape(bsz, self.n_head, 1, batch_src_len) ) new_padding_mask = torch.zeros_like(key_padding_mask, dtype=x.dtype) padding_mask = new_padding_mask.masked_fill(key_padding_mask, float("-inf")) for block in self.blocks: x = block(x, mask=padding_mask) if self.avg_pooler: x = x.permute(0, 2, 1) x = self.avg_pooler(x) x = x.permute(0, 2, 1) x = self.ln_post(x) x = self.proj(x) if self.audio_bos_eos_token is not None: bos = self.audio_bos_eos_token.weight[0][None, :] eos = self.audio_bos_eos_token.weight[1][None, :] else: bos, eos = None, None return x, bos, eos def encode( self, input_audios: Tensor, input_audio_lengths: Tensor, audio_span_tokens: List, ): real_input_audio_lens = input_audio_lengths[:, 0].tolist() max_len_in_batch = max(real_input_audio_lens) padding_mask = torch.ones([input_audios.size(0), max_len_in_batch]).to( dtype=self.conv1.weight.dtype, device=self.conv1.weight.device ) for index in range(len(input_audios)): padding_mask[index, : input_audio_lengths[index][0].item()] = 0 x, bos, eos = self(input_audios, padding_mask, input_audio_lengths) output_audios = [] for i in range(len(audio_span_tokens)): audio_span = audio_span_tokens[i] audio = x[i][: audio_span - 2] if bos is not None: audio = torch.concat([bos, audio, eos]) assert len(audio) == audio_span output_audios.append(audio) return output_audios