Uploaded PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 256.43 +/- 21.38
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fafcaa4b5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fafcaa4b680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fafcaa4b710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fafcaa4b7a0>", "_build": "<function ActorCriticPolicy._build at 0x7fafcaa4b830>", "forward": "<function ActorCriticPolicy.forward at 0x7fafcaa4b8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fafcaa4b950>", "_predict": "<function ActorCriticPolicy._predict at 0x7fafcaa4b9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fafcaa4ba70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fafcaa4bb00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fafcaa4bb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fafcaa98a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651943794.5394073, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMWZz5oz8S8JdoKO0FEdbl7ejC+xu8xugAAgD8AAIA/Oppqvu/7Fj1bRy07c6qpuR9irr6GIsI6AACAPwAAgD+gL0e+6eYxPmeilbx+L02+QYe9vDLFM7wAAAAAAAAAAM1sEjxFQkI/HUd5PZdR277BCGC7az83PQAAAAAAAAAAnSzlvjZDrj6Z9Y09M720vvRmsb2GugM9AAAAAAAAAACAvtA+vY4DPzDsfj1hXZa+tHAJPm4JQ7wAAAAAAAAAAJNQbL53bB69tZ1eOl5GHzkDaow+i3CeuQAAgD8AAIA/BjFcvn4s9D1PUYc9Cf8Nvo9irryi63A8AAAAAAAAAAA2cVG+26bGvHZig7vNifG5W9MyPn/OxDoAAIA/AACAP+0IRz6BOpi80qsou4EQbTmRmgi+dSJYOgAAgD8AAIA/MwX/vSnYCLq7f4O52kueNdEot7sibZk4AACAPwAAgD/DHu4+l7LuPn2UoDxEgNK+69ELPsksIL0AAAAAAAAAAACAjD64o4Y9VWzxvSHcIb7FJuQ8CicLPAAAAAAAAAAATTI/Pk75jLwGr6E75g4IusM9A77jfNi6AACAPwAAgD9ysYq+qO+RvDPC6Tj9uw83yiT9PQc9DLgAAIA/AACAP5oNmbt7xnY/W4kqvZwkHr+oY+47Cl93uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVydnKO7eW0CUhpRSlIwBbJRN6AOMAXSUR0CWi1lFc6eYdX2UKGgGaAloD0MIq5Z0lIOJXkCUhpRSlGgVTegDaBZHQJaNp97Wuox1fZQoaAZoCWgPQwgWa7jI/VtwQJSGlFKUaBVNAgFoFkdAlo3EoF3Y+XV9lChoBmgJaA9DCMdkcf8RUGFAlIaUUpRoFU3oA2gWR0CWjeA5q/M4dX2UKGgGaAloD0MIGjGzz2NVb0CUhpRSlGgVTQIBaBZHQJaOOW3Sa3J1fZQoaAZoCWgPQwgo8iTpGqlvQJSGlFKUaBVNBgFoFkdAlo53NgSey3V9lChoBmgJaA9DCJWbqKW5RURAlIaUUpRoFU0AAWgWR0CWkvNcnmaIdX2UKGgGaAloD0MIDY0ngrg8cECUhpRSlGgVTQwBaBZHQJaTTGFSKm91fZQoaAZoCWgPQwhRTN4AM2pxQJSGlFKUaBVNFwFoFkdAlpTYREnb7HV9lChoBmgJaA9DCDKP/MEAL3BAlIaUUpRoFU2tAWgWR0CWllY/Vy3kdX2UKGgGaAloD0MIK97IPLJtcECUhpRSlGgVTQEBaBZHQJaXOALApKB1fZQoaAZoCWgPQwgi4Xt/g4twQJSGlFKUaBVNFgFoFkdAlpfwXMyJsXV9lChoBmgJaA9DCECgM2kTjXBAlIaUUpRoFU0dAWgWR0CWmBlGwzLwdX2UKGgGaAloD0MI3lZ6bXbRcECUhpRSlGgVTQoBaBZHQJaYUd1dPcl1fZQoaAZoCWgPQwgzNQnekOxuQJSGlFKUaBVNEgFoFkdAlphQ7kn1F3V9lChoBmgJaA9DCAoRcAiVTnJAlIaUUpRoFU2IAWgWR0CWmJOoYNy6dX2UKGgGaAloD0MIiIGufQFnW0CUhpRSlGgVTegDaBZHQJaY7Rnezld1fZQoaAZoCWgPQwj2JLA5h1lgQJSGlFKUaBVN6ANoFkdAlpwVHSWqtHV9lChoBmgJaA9DCLWmecep9GtAlIaUUpRoFU0CAWgWR0CWnNeXRgJDdX2UKGgGaAloD0MIqyNHOgMKb0CUhpRSlGgVTUABaBZHQJae6QfZElV1fZQoaAZoCWgPQwiojlVKT3RrQJSGlFKUaBVL+mgWR0CWn25O8CgcdX2UKGgGaAloD0MI6Zs0DcrZcECUhpRSlGgVS9ZoFkdAlp+cuanaWXV9lChoBmgJaA9DCIDTu3g//m9AlIaUUpRoFU0qAWgWR0CWn/br1M/RdX2UKGgGaAloD0MIRBX+DK9DcECUhpRSlGgVS+RoFkdAlqBNUfgaWHV9lChoBmgJaA9DCBghPNq4T3BAlIaUUpRoFU0iAWgWR0CWoc+g13t8dX2UKGgGaAloD0MIl8YvvJKJcECUhpRSlGgVTQsBaBZHQJaiBipeeFt1fZQoaAZoCWgPQwjnUIaqGFtwQJSGlFKUaBVNBAFoFkdAlqINdmg8KXV9lChoBmgJaA9DCAq7KHrgCG5AlIaUUpRoFU0iAWgWR0CWo2oJzDGcdX2UKGgGaAloD0MIqWxYU1lZcUCUhpRSlGgVS+toFkdAlqhNet0V8HV9lChoBmgJaA9DCCXmWUlrQ3BAlIaUUpRoFUvpaBZHQJaom7QLNOd1fZQoaAZoCWgPQwjBqQ8kb2pwQJSGlFKUaBVL+WgWR0CWqL4nndO7dX2UKGgGaAloD0MIv2A3bFtib0CUhpRSlGgVS/9oFkdAlqngogFHKHV9lChoBmgJaA9DCEj+YOC5Rm1AlIaUUpRoFUv1aBZHQJarXiQ1aW51fZQoaAZoCWgPQwiNmxpofjFzQJSGlFKUaBVL+mgWR0CWq10jkdWAdX2UKGgGaAloD0MIoMa9+Y1+cUCUhpRSlGgVTVMBaBZHQJar+T1TR6Z1fZQoaAZoCWgPQwj0NjY70lBgQJSGlFKUaBVN6ANoFkdAlqwaohpxm3V9lChoBmgJaA9DCMnk1M4wvllAlIaUUpRoFU3oA2gWR0CWrDvs7dSEdX2UKGgGaAloD0MIrOEi9/QHbUCUhpRSlGgVS+9oFkdAlqyz+BH09XV9lChoBmgJaA9DCLYxdsJLyVlAlIaUUpRoFU3oA2gWR0CXCu1xsEaEdX2UKGgGaAloD0MIlZ7pJUY7YECUhpRSlGgVTegDaBZHQJcK90hePaN1fZQoaAZoCWgPQwgr3zMSIZNwQJSGlFKUaBVL2WgWR0CXC6V/c32mdX2UKGgGaAloD0MIdQXbiKdgbkCUhpRSlGgVTRgBaBZHQJcNim4y44J1fZQoaAZoCWgPQwjByTZwRyxwQJSGlFKUaBVNGgFoFkdAlw31KGtZFHV9lChoBmgJaA9DCD2a6sl8wnBAlIaUUpRoFUvcaBZHQJcOAbDMvAZ1fZQoaAZoCWgPQwjVBFH3AWRvQJSGlFKUaBVNEwFoFkdAlw6v+jua4XV9lChoBmgJaA9DCFEzpIri0m5AlIaUUpRoFUvoaBZHQJcPARoRIz51fZQoaAZoCWgPQwiCOuXRDVFtQJSGlFKUaBVNAAFoFkdAlw/5vxYq5XV9lChoBmgJaA9DCO4E+69z+ztAlIaUUpRoFUvRaBZHQJcSCf9P1th1fZQoaAZoCWgPQwgFpP0PsGZvQJSGlFKUaBVNAgFoFkdAlxPVzltCRnV9lChoBmgJaA9DCJJ55A/GjHFAlIaUUpRoFUvqaBZHQJcWiCFsYVJ1fZQoaAZoCWgPQwhAS1ewjRZfQJSGlFKUaBVN6ANoFkdAlxgFyq+8G3V9lChoBmgJaA9DCIo73uS3AG9AlIaUUpRoFU1SAWgWR0CXGBJFb3XadX2UKGgGaAloD0MIv0hoyzkycECUhpRSlGgVTTwBaBZHQJcbLNliBoV1fZQoaAZoCWgPQwjl8EknkrNtQJSGlFKUaBVL6mgWR0CXG3/jbSJCdX2UKGgGaAloD0MIO1ESEmmRW0CUhpRSlGgVTegDaBZHQJcczp8neBR1fZQoaAZoCWgPQwic/YFy26RkQJSGlFKUaBVN6ANoFkdAlx2sy31BdHV9lChoBmgJaA9DCKPnFroSInJAlIaUUpRoFUvkaBZHQJcgUdIXj2l1fZQoaAZoCWgPQwhUqkTZ23drQJSGlFKUaBVNCQFoFkdAlyOe/xlQM3V9lChoBmgJaA9DCC7GwDoONWBAlIaUUpRoFU3oA2gWR0CXI8UfPompdX2UKGgGaAloD0MItU/HY4bCbUCUhpRSlGgVTRUBaBZHQJckPYmLLp11fZQoaAZoCWgPQwio/kEkAztwQJSGlFKUaBVL7WgWR0CXJ3MERraedX2UKGgGaAloD0MI6gYKvFOicECUhpRSlGgVS/5oFkdAlywgy6+WW3V9lChoBmgJaA9DCAQCnUkbVXBAlIaUUpRoFUvhaBZHQJcuRChN/ON1fZQoaAZoCWgPQwjIlA9B1YxgQJSGlFKUaBVN6ANoFkdAly9Yc3l0YHV9lChoBmgJaA9DCCC0Hr7MbWFAlIaUUpRoFU3oA2gWR0CXMABoVVPvdX2UKGgGaAloD0MIX5ULlf+uY0CUhpRSlGgVTegDaBZHQJcw/BCUorp1fZQoaAZoCWgPQwiLUkKwahZwQJSGlFKUaBVNIAFoFkdAlzHEUXYUWXV9lChoBmgJaA9DCCQp6WHobHFAlIaUUpRoFU1NAWgWR0CXMzQF9roGdX2UKGgGaAloD0MIWI/7VmupbUCUhpRSlGgVTQ8BaBZHQJc0DLidat91fZQoaAZoCWgPQwjjjcwjfxNaQJSGlFKUaBVN6ANoFkdAlziSo0hvBXV9lChoBmgJaA9DCJ3X2CWqcW9AlIaUUpRoFUvtaBZHQJc48Muvllt1fZQoaAZoCWgPQwhAvRk1X1haQJSGlFKUaBVN6ANoFkdAlzkoCMglnnV9lChoBmgJaA9DCAby7PKtrl1AlIaUUpRoFU3oA2gWR0CXOedsSCe3dX2UKGgGaAloD0MIARO4dTc3X0CUhpRSlGgVTegDaBZHQJc7SZrpJPJ1fZQoaAZoCWgPQwj2CgvuB+VtQJSGlFKUaBVNYAFoFkdAlzumLYPGyXV9lChoBmgJaA9DCLhbkgN22W9AlIaUUpRoFUvtaBZHQJc9FQIldC51fZQoaAZoCWgPQwifHAWIggxtQJSGlFKUaBVNVwFoFkdAlz5AdsBQvnV9lChoBmgJaA9DCNgpVg1Cd2FAlIaUUpRoFU3oA2gWR0CXP2A5Jbt7dX2UKGgGaAloD0MI0GOUZ16dcECUhpRSlGgVS/VoFkdAl0IF+qioKnV9lChoBmgJaA9DCAGkNnHy/25AlIaUUpRoFU3GAWgWR0CXQhx4ptrLdX2UKGgGaAloD0MIIOwUq0apcUCUhpRSlGgVTZEDaBZHQJdDUpUgjhV1fZQoaAZoCWgPQwhblq/LsAZwQJSGlFKUaBVL+mgWR0CXQ4iwSrYHdX2UKGgGaAloD0MIDeTZ5VulW0CUhpRSlGgVTegDaBZHQJdGaQIUrTZ1fZQoaAZoCWgPQwh9JCU9jKRvQJSGlFKUaBVNLAFoFkdAl0dNNN8E3nV9lChoBmgJaA9DCKJFtvP9hGFAlIaUUpRoFU3oA2gWR0CXSN6tknTidX2UKGgGaAloD0MI3st9cpQbb0CUhpRSlGgVTRIBaBZHQJdKnI7vG6x1fZQoaAZoCWgPQwgDtK1mHUZwQJSGlFKUaBVL2GgWR0CXTK+jua4MdX2UKGgGaAloD0MIaqD5nDt6bkCUhpRSlGgVS+JoFkdAl0zsKTjebnV9lChoBmgJaA9DCBu+hXUjPHFAlIaUUpRoFU0xAWgWR0CXTxFdcB2fdX2UKGgGaAloD0MIeeV628xTbkCUhpRSlGgVS+RoFkdAl1CP1DjR2XV9lChoBmgJaA9DCGQ6dHqeKnBAlIaUUpRoFU0TAWgWR0CXU5rQgLZ0dX2UKGgGaAloD0MIXaYmwVtkcECUhpRSlGgVTQoBaBZHQJdWer/82rJ1fZQoaAZoCWgPQwiRK/UsyExyQJSGlFKUaBVNYAFoFkdAl1i3avicXnV9lChoBmgJaA9DCGeBdodUTnBAlIaUUpRoFUv9aBZHQJdalnXd0q91fZQoaAZoCWgPQwgs19tm6jJwQJSGlFKUaBVNQgFoFkdAl1tV/hESd3V9lChoBmgJaA9DCP4mFCLgxldAlIaUUpRoFU3oA2gWR0CXW6717IDHdX2UKGgGaAloD0MIdTklICZmb0CUhpRSlGgVTVYCaBZHQJdcP+zdDY11fZQoaAZoCWgPQwhEpnwIqs1kQJSGlFKUaBVN6ANoFkdAl1xqO1fE43V9lChoBmgJaA9DCPZGrTA9B3FAlIaUUpRoFUv0aBZHQJdeYxfv4M51fZQoaAZoCWgPQwhkeVc94JxkQJSGlFKUaBVN6ANoFkdAl16BpYcNpnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 230, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2206ffce3943359712e8d367d2b255410ca01a5040e0ed182a2a30a5bf53b965
|
3 |
+
size 144072
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fafcaa4b5f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fafcaa4b680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fafcaa4b710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fafcaa4b7a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fafcaa4b830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fafcaa4b8c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fafcaa4b950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fafcaa4b9e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fafcaa4ba70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fafcaa4bb00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fafcaa4bb90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fafcaa98a20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651943794.5394073,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMWZz5oz8S8JdoKO0FEdbl7ejC+xu8xugAAgD8AAIA/Oppqvu/7Fj1bRy07c6qpuR9irr6GIsI6AACAPwAAgD+gL0e+6eYxPmeilbx+L02+QYe9vDLFM7wAAAAAAAAAAM1sEjxFQkI/HUd5PZdR277BCGC7az83PQAAAAAAAAAAnSzlvjZDrj6Z9Y09M720vvRmsb2GugM9AAAAAAAAAACAvtA+vY4DPzDsfj1hXZa+tHAJPm4JQ7wAAAAAAAAAAJNQbL53bB69tZ1eOl5GHzkDaow+i3CeuQAAgD8AAIA/BjFcvn4s9D1PUYc9Cf8Nvo9irryi63A8AAAAAAAAAAA2cVG+26bGvHZig7vNifG5W9MyPn/OxDoAAIA/AACAP+0IRz6BOpi80qsou4EQbTmRmgi+dSJYOgAAgD8AAIA/MwX/vSnYCLq7f4O52kueNdEot7sibZk4AACAPwAAgD/DHu4+l7LuPn2UoDxEgNK+69ELPsksIL0AAAAAAAAAAACAjD64o4Y9VWzxvSHcIb7FJuQ8CicLPAAAAAAAAAAATTI/Pk75jLwGr6E75g4IusM9A77jfNi6AACAPwAAgD9ysYq+qO+RvDPC6Tj9uw83yiT9PQc9DLgAAIA/AACAP5oNmbt7xnY/W4kqvZwkHr+oY+47Cl93uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVydnKO7eW0CUhpRSlIwBbJRN6AOMAXSUR0CWi1lFc6eYdX2UKGgGaAloD0MIq5Z0lIOJXkCUhpRSlGgVTegDaBZHQJaNp97Wuox1fZQoaAZoCWgPQwgWa7jI/VtwQJSGlFKUaBVNAgFoFkdAlo3EoF3Y+XV9lChoBmgJaA9DCMdkcf8RUGFAlIaUUpRoFU3oA2gWR0CWjeA5q/M4dX2UKGgGaAloD0MIGjGzz2NVb0CUhpRSlGgVTQIBaBZHQJaOOW3Sa3J1fZQoaAZoCWgPQwgo8iTpGqlvQJSGlFKUaBVNBgFoFkdAlo53NgSey3V9lChoBmgJaA9DCJWbqKW5RURAlIaUUpRoFU0AAWgWR0CWkvNcnmaIdX2UKGgGaAloD0MIDY0ngrg8cECUhpRSlGgVTQwBaBZHQJaTTGFSKm91fZQoaAZoCWgPQwhRTN4AM2pxQJSGlFKUaBVNFwFoFkdAlpTYREnb7HV9lChoBmgJaA9DCDKP/MEAL3BAlIaUUpRoFU2tAWgWR0CWllY/Vy3kdX2UKGgGaAloD0MIK97IPLJtcECUhpRSlGgVTQEBaBZHQJaXOALApKB1fZQoaAZoCWgPQwgi4Xt/g4twQJSGlFKUaBVNFgFoFkdAlpfwXMyJsXV9lChoBmgJaA9DCECgM2kTjXBAlIaUUpRoFU0dAWgWR0CWmBlGwzLwdX2UKGgGaAloD0MI3lZ6bXbRcECUhpRSlGgVTQoBaBZHQJaYUd1dPcl1fZQoaAZoCWgPQwgzNQnekOxuQJSGlFKUaBVNEgFoFkdAlphQ7kn1F3V9lChoBmgJaA9DCAoRcAiVTnJAlIaUUpRoFU2IAWgWR0CWmJOoYNy6dX2UKGgGaAloD0MIiIGufQFnW0CUhpRSlGgVTegDaBZHQJaY7Rnezld1fZQoaAZoCWgPQwj2JLA5h1lgQJSGlFKUaBVN6ANoFkdAlpwVHSWqtHV9lChoBmgJaA9DCLWmecep9GtAlIaUUpRoFU0CAWgWR0CWnNeXRgJDdX2UKGgGaAloD0MIqyNHOgMKb0CUhpRSlGgVTUABaBZHQJae6QfZElV1fZQoaAZoCWgPQwiojlVKT3RrQJSGlFKUaBVL+mgWR0CWn25O8CgcdX2UKGgGaAloD0MI6Zs0DcrZcECUhpRSlGgVS9ZoFkdAlp+cuanaWXV9lChoBmgJaA9DCIDTu3g//m9AlIaUUpRoFU0qAWgWR0CWn/br1M/RdX2UKGgGaAloD0MIRBX+DK9DcECUhpRSlGgVS+RoFkdAlqBNUfgaWHV9lChoBmgJaA9DCBghPNq4T3BAlIaUUpRoFU0iAWgWR0CWoc+g13t8dX2UKGgGaAloD0MIl8YvvJKJcECUhpRSlGgVTQsBaBZHQJaiBipeeFt1fZQoaAZoCWgPQwjnUIaqGFtwQJSGlFKUaBVNBAFoFkdAlqINdmg8KXV9lChoBmgJaA9DCAq7KHrgCG5AlIaUUpRoFU0iAWgWR0CWo2oJzDGcdX2UKGgGaAloD0MIqWxYU1lZcUCUhpRSlGgVS+toFkdAlqhNet0V8HV9lChoBmgJaA9DCCXmWUlrQ3BAlIaUUpRoFUvpaBZHQJaom7QLNOd1fZQoaAZoCWgPQwjBqQ8kb2pwQJSGlFKUaBVL+WgWR0CWqL4nndO7dX2UKGgGaAloD0MIv2A3bFtib0CUhpRSlGgVS/9oFkdAlqngogFHKHV9lChoBmgJaA9DCEj+YOC5Rm1AlIaUUpRoFUv1aBZHQJarXiQ1aW51fZQoaAZoCWgPQwiNmxpofjFzQJSGlFKUaBVL+mgWR0CWq10jkdWAdX2UKGgGaAloD0MIoMa9+Y1+cUCUhpRSlGgVTVMBaBZHQJar+T1TR6Z1fZQoaAZoCWgPQwj0NjY70lBgQJSGlFKUaBVN6ANoFkdAlqwaohpxm3V9lChoBmgJaA9DCMnk1M4wvllAlIaUUpRoFU3oA2gWR0CWrDvs7dSEdX2UKGgGaAloD0MIrOEi9/QHbUCUhpRSlGgVS+9oFkdAlqyz+BH09XV9lChoBmgJaA9DCLYxdsJLyVlAlIaUUpRoFU3oA2gWR0CXCu1xsEaEdX2UKGgGaAloD0MIlZ7pJUY7YECUhpRSlGgVTegDaBZHQJcK90hePaN1fZQoaAZoCWgPQwgr3zMSIZNwQJSGlFKUaBVL2WgWR0CXC6V/c32mdX2UKGgGaAloD0MIdQXbiKdgbkCUhpRSlGgVTRgBaBZHQJcNim4y44J1fZQoaAZoCWgPQwjByTZwRyxwQJSGlFKUaBVNGgFoFkdAlw31KGtZFHV9lChoBmgJaA9DCD2a6sl8wnBAlIaUUpRoFUvcaBZHQJcOAbDMvAZ1fZQoaAZoCWgPQwjVBFH3AWRvQJSGlFKUaBVNEwFoFkdAlw6v+jua4XV9lChoBmgJaA9DCFEzpIri0m5AlIaUUpRoFUvoaBZHQJcPARoRIz51fZQoaAZoCWgPQwiCOuXRDVFtQJSGlFKUaBVNAAFoFkdAlw/5vxYq5XV9lChoBmgJaA9DCO4E+69z+ztAlIaUUpRoFUvRaBZHQJcSCf9P1th1fZQoaAZoCWgPQwgFpP0PsGZvQJSGlFKUaBVNAgFoFkdAlxPVzltCRnV9lChoBmgJaA9DCJJ55A/GjHFAlIaUUpRoFUvqaBZHQJcWiCFsYVJ1fZQoaAZoCWgPQwhAS1ewjRZfQJSGlFKUaBVN6ANoFkdAlxgFyq+8G3V9lChoBmgJaA9DCIo73uS3AG9AlIaUUpRoFU1SAWgWR0CXGBJFb3XadX2UKGgGaAloD0MIv0hoyzkycECUhpRSlGgVTTwBaBZHQJcbLNliBoV1fZQoaAZoCWgPQwjl8EknkrNtQJSGlFKUaBVL6mgWR0CXG3/jbSJCdX2UKGgGaAloD0MIO1ESEmmRW0CUhpRSlGgVTegDaBZHQJcczp8neBR1fZQoaAZoCWgPQwic/YFy26RkQJSGlFKUaBVN6ANoFkdAlx2sy31BdHV9lChoBmgJaA9DCKPnFroSInJAlIaUUpRoFUvkaBZHQJcgUdIXj2l1fZQoaAZoCWgPQwhUqkTZ23drQJSGlFKUaBVNCQFoFkdAlyOe/xlQM3V9lChoBmgJaA9DCC7GwDoONWBAlIaUUpRoFU3oA2gWR0CXI8UfPompdX2UKGgGaAloD0MItU/HY4bCbUCUhpRSlGgVTRUBaBZHQJckPYmLLp11fZQoaAZoCWgPQwio/kEkAztwQJSGlFKUaBVL7WgWR0CXJ3MERraedX2UKGgGaAloD0MI6gYKvFOicECUhpRSlGgVS/5oFkdAlywgy6+WW3V9lChoBmgJaA9DCAQCnUkbVXBAlIaUUpRoFUvhaBZHQJcuRChN/ON1fZQoaAZoCWgPQwjIlA9B1YxgQJSGlFKUaBVN6ANoFkdAly9Yc3l0YHV9lChoBmgJaA9DCCC0Hr7MbWFAlIaUUpRoFU3oA2gWR0CXMABoVVPvdX2UKGgGaAloD0MIX5ULlf+uY0CUhpRSlGgVTegDaBZHQJcw/BCUorp1fZQoaAZoCWgPQwiLUkKwahZwQJSGlFKUaBVNIAFoFkdAlzHEUXYUWXV9lChoBmgJaA9DCCQp6WHobHFAlIaUUpRoFU1NAWgWR0CXMzQF9roGdX2UKGgGaAloD0MIWI/7VmupbUCUhpRSlGgVTQ8BaBZHQJc0DLidat91fZQoaAZoCWgPQwjjjcwjfxNaQJSGlFKUaBVN6ANoFkdAlziSo0hvBXV9lChoBmgJaA9DCJ3X2CWqcW9AlIaUUpRoFUvtaBZHQJc48Muvllt1fZQoaAZoCWgPQwhAvRk1X1haQJSGlFKUaBVN6ANoFkdAlzkoCMglnnV9lChoBmgJaA9DCAby7PKtrl1AlIaUUpRoFU3oA2gWR0CXOedsSCe3dX2UKGgGaAloD0MIARO4dTc3X0CUhpRSlGgVTegDaBZHQJc7SZrpJPJ1fZQoaAZoCWgPQwj2CgvuB+VtQJSGlFKUaBVNYAFoFkdAlzumLYPGyXV9lChoBmgJaA9DCLhbkgN22W9AlIaUUpRoFUvtaBZHQJc9FQIldC51fZQoaAZoCWgPQwifHAWIggxtQJSGlFKUaBVNVwFoFkdAlz5AdsBQvnV9lChoBmgJaA9DCNgpVg1Cd2FAlIaUUpRoFU3oA2gWR0CXP2A5Jbt7dX2UKGgGaAloD0MI0GOUZ16dcECUhpRSlGgVS/VoFkdAl0IF+qioKnV9lChoBmgJaA9DCAGkNnHy/25AlIaUUpRoFU3GAWgWR0CXQhx4ptrLdX2UKGgGaAloD0MIIOwUq0apcUCUhpRSlGgVTZEDaBZHQJdDUpUgjhV1fZQoaAZoCWgPQwhblq/LsAZwQJSGlFKUaBVL+mgWR0CXQ4iwSrYHdX2UKGgGaAloD0MIDeTZ5VulW0CUhpRSlGgVTegDaBZHQJdGaQIUrTZ1fZQoaAZoCWgPQwh9JCU9jKRvQJSGlFKUaBVNLAFoFkdAl0dNNN8E3nV9lChoBmgJaA9DCKJFtvP9hGFAlIaUUpRoFU3oA2gWR0CXSN6tknTidX2UKGgGaAloD0MI3st9cpQbb0CUhpRSlGgVTRIBaBZHQJdKnI7vG6x1fZQoaAZoCWgPQwgDtK1mHUZwQJSGlFKUaBVL2GgWR0CXTK+jua4MdX2UKGgGaAloD0MIaqD5nDt6bkCUhpRSlGgVS+JoFkdAl0zsKTjebnV9lChoBmgJaA9DCBu+hXUjPHFAlIaUUpRoFU0xAWgWR0CXTxFdcB2fdX2UKGgGaAloD0MIeeV628xTbkCUhpRSlGgVS+RoFkdAl1CP1DjR2XV9lChoBmgJaA9DCGQ6dHqeKnBAlIaUUpRoFU0TAWgWR0CXU5rQgLZ0dX2UKGgGaAloD0MIXaYmwVtkcECUhpRSlGgVTQoBaBZHQJdWer/82rJ1fZQoaAZoCWgPQwiRK/UsyExyQJSGlFKUaBVNYAFoFkdAl1i3avicXnV9lChoBmgJaA9DCGeBdodUTnBAlIaUUpRoFUv9aBZHQJdalnXd0q91fZQoaAZoCWgPQwgs19tm6jJwQJSGlFKUaBVNQgFoFkdAl1tV/hESd3V9lChoBmgJaA9DCP4mFCLgxldAlIaUUpRoFU3oA2gWR0CXW6717IDHdX2UKGgGaAloD0MIdTklICZmb0CUhpRSlGgVTVYCaBZHQJdcP+zdDY11fZQoaAZoCWgPQwhEpnwIqs1kQJSGlFKUaBVN6ANoFkdAl1xqO1fE43V9lChoBmgJaA9DCPZGrTA9B3FAlIaUUpRoFUv0aBZHQJdeYxfv4M51fZQoaAZoCWgPQwhkeVc94JxkQJSGlFKUaBVN6ANoFkdAl16BpYcNpnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 230,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff630fad126f377c00bd0a5e790bfe0e793472502fd28a17717fb01e48a7957a
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a9e5eea1bf08d45b34f909b77d6a6f8325a615fdfa0bbbcd9406d8bf6a0d397
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.17.3
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:717ff31ffd4c80d256a8bc06aa3c0b7c0e727f3f4d5b757413444697af2757a9
|
3 |
+
size 231921
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.4327607211803, "std_reward": 21.378366622605146, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T19:00:31.658869"}
|