File size: 8,768 Bytes
aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 af590a1 aa3b1c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
language:
- da
- gmq
- nb
- false
- ru
- sv
- uk
- zle
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-zle-gmq
results:
- task:
name: Translation rus-dan
type: translation
args: rus-dan
dataset:
name: flores101-devtest
type: flores_101
args: rus dan devtest
metrics:
- name: BLEU
type: bleu
value: 28.0
- task:
name: Translation rus-nob
type: translation
args: rus-nob
dataset:
name: flores101-devtest
type: flores_101
args: rus nob devtest
metrics:
- name: BLEU
type: bleu
value: 20.6
- task:
name: Translation rus-swe
type: translation
args: rus-swe
dataset:
name: flores101-devtest
type: flores_101
args: rus swe devtest
metrics:
- name: BLEU
type: bleu
value: 26.4
- task:
name: Translation ukr-dan
type: translation
args: ukr-dan
dataset:
name: flores101-devtest
type: flores_101
args: ukr dan devtest
metrics:
- name: BLEU
type: bleu
value: 30.3
- task:
name: Translation ukr-nob
type: translation
args: ukr-nob
dataset:
name: flores101-devtest
type: flores_101
args: ukr nob devtest
metrics:
- name: BLEU
type: bleu
value: 21.1
- task:
name: Translation ukr-swe
type: translation
args: ukr-swe
dataset:
name: flores101-devtest
type: flores_101
args: ukr swe devtest
metrics:
- name: BLEU
type: bleu
value: 28.8
- task:
name: Translation rus-dan
type: translation
args: rus-dan
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: rus-dan
metrics:
- name: BLEU
type: bleu
value: 59.6
- task:
name: Translation rus-nob
type: translation
args: rus-nob
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: rus-nob
metrics:
- name: BLEU
type: bleu
value: 46.1
- task:
name: Translation rus-swe
type: translation
args: rus-swe
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: rus-swe
metrics:
- name: BLEU
type: bleu
value: 53.3
---
# opus-mt-tc-big-zle-gmq
Neural machine translation model for translating from East Slavic languages (zle) to North Germanic languages (gmq).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-14
* source language(s): rus ukr
* target language(s): dan nob nor swe
* valid target language labels: >>dan<< >>nob<< >>nor<< >>swe<<
* model: transformer-big
* data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+pft_transformer-big_2022-03-14.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.zip)
* more information released models: [OPUS-MT zle-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-gmq/README.md)
* more information about the model: [MarianMT](https://huggingface.co./docs/transformers/model_doc/marian)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<`
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>dan<< Заўтра ўжо чацвер.",
">>swe<< Том грав з Мері в кішки-мишки."
]
model_name = "pytorch-models/opus-mt-tc-big-zle-gmq"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# I morgen er det torsdag.
# Tom lekte med Mary i katt-möss.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-gmq")
print(pipe(">>dan<< Заўтра ўжо чацвер."))
# expected output: I morgen er det torsdag.
```
## Benchmarks
* test set translations: [opusTCv20210807+pft_transformer-big_2022-03-14.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.test.txt)
* test set scores: [opusTCv20210807+pft_transformer-big_2022-03-14.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| rus-dan | tatoeba-test-v2021-08-07 | 0.74307 | 59.6 | 1713 | 11746 |
| rus-nob | tatoeba-test-v2021-08-07 | 0.66376 | 46.1 | 1277 | 11672 |
| rus-swe | tatoeba-test-v2021-08-07 | 0.69608 | 53.3 | 1282 | 8449 |
| bel-dan | flores101-devtest | 0.47621 | 13.9 | 1012 | 24638 |
| bel-nob | flores101-devtest | 0.44966 | 10.8 | 1012 | 23873 |
| bel-swe | flores101-devtest | 0.47274 | 13.2 | 1012 | 23121 |
| rus-dan | flores101-devtest | 0.55917 | 28.0 | 1012 | 24638 |
| rus-nob | flores101-devtest | 0.50724 | 20.6 | 1012 | 23873 |
| rus-swe | flores101-devtest | 0.55812 | 26.4 | 1012 | 23121 |
| ukr-dan | flores101-devtest | 0.57829 | 30.3 | 1012 | 24638 |
| ukr-nob | flores101-devtest | 0.52271 | 21.1 | 1012 | 23873 |
| ukr-swe | flores101-devtest | 0.57499 | 28.8 | 1012 | 23121 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 1bdabf7
* port time: Wed Mar 23 23:13:54 EET 2022
* port machine: LM0-400-22516.local
|