--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny_en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.36304909560723514 --- # whisper-tiny_en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6349 - Wer Ortho: 0.3964 - Wer: 0.3630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 3.8643 | 1.79 | 50 | 3.5786 | 0.5114 | 0.3714 | | 2.4042 | 3.57 | 100 | 2.3266 | 0.4657 | 0.3689 | | 1.4319 | 5.36 | 150 | 1.3619 | 0.4367 | 0.3702 | | 0.7558 | 7.14 | 200 | 0.7935 | 0.4213 | 0.3721 | | 0.524 | 8.93 | 250 | 0.6820 | 0.4078 | 0.3721 | | 0.4702 | 10.71 | 300 | 0.6349 | 0.3964 | 0.3630 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3