--- license: apache-2.0 --- [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co./hardware/habana). ## Wav2Vec2 model HPU configuration This model only contains the `GaudiConfig` file for running the [Wav2Vec2](https://huggingface.co./facebook/wav2vec2-base) model on Habana's Gaudi processors (HPU). **This model contains no model weights, only a GaudiConfig.** This enables to specify: - `use_fused_adam`: whether to use Habana's custom AdamW implementation - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator - `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision ## Usage The model is instantiated the same way as in the Transformers library. The only difference is that there are a few new training arguments specific to HPUs.\ It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy. [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/audio-classification/run_audio_classification.py) is an audio classification example script to fine-tune a model. You can run it with Wav2Vec2 with the following command: ```bash python run_audio_classification.py \ --model_name_or_path facebook/wav2vec2-base \ --dataset_name superb \ --dataset_config_name ks \ --output_dir /tmp/wav2vec2-base-ft-keyword-spotting \ --overwrite_output_dir \ --remove_unused_columns False \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --max_length_seconds 1 \ --attention_mask False \ --warmup_ratio 0.1 \ --num_train_epochs 5 \ --per_device_train_batch_size 256 \ --per_device_eval_batch_size 256 \ --dataloader_num_workers 4 \ --seed 27 \ --use_habana \ --use_lazy_mode \ --gaudi_config_name Habana/wav2vec2 \ --throughput_warmup_steps 2 \ --bf16 ``` Check the [documentation](https://huggingface.co./docs/optimum/habana/index) out for more advanced usage and examples.