YanshekWoo commited on
Commit
9f7b920
·
verified ·
1 Parent(s): 0244d23
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 896,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2Model"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 896,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 4864,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 24,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 14,
16
+ "num_hidden_layers": 24,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 131072,
21
+ "tie_word_embeddings": true,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.39.2",
24
+ "use_cache": false,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 151936
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.7.0",
4
+ "transformers": "4.39.2",
5
+ "pytorch": "2.1.0+cpu"
6
+ },
7
+ "prompts": {
8
+ "query": "",
9
+ "document": ""
10
+ },
11
+ "default_prompt_name": null
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7846b4bde9f6f46d959a3a5897a97849cbac49e88b88be40a737143d8da4900a
3
+ size 1976161736
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 32768,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from typing import List, Optional
3
+ from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer as OriginalQwen2Tokenizer
4
+ from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast as OriginalQwen2TokenizerFast
5
+ from tokenizers import processors
6
+
7
+ VOCAB_FILES_NAMES = {
8
+ "vocab_file": "vocab.json",
9
+ "merges_file": "merges.txt",
10
+ "tokenizer_file": "tokenizer.json",
11
+ }
12
+
13
+ class Qwen2Tokenizer(OriginalQwen2Tokenizer):
14
+ """
15
+ Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
16
+
17
+ Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
18
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
19
+
20
+ ```python
21
+ >>> from transformers import Qwen2Tokenizer
22
+
23
+ >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
24
+ >>> tokenizer("Hello world")["input_ids"]
25
+ [9707, 1879]
26
+
27
+ >>> tokenizer(" Hello world")["input_ids"]
28
+ [21927, 1879]
29
+ ```
30
+ This is expected.
31
+
32
+ You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
33
+
34
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
35
+ this superclass for more information regarding those methods.
36
+
37
+ Args:
38
+ vocab_file (`str`):
39
+ Path to the vocabulary file.
40
+ merges_file (`str`):
41
+ Path to the merges file.
42
+ errors (`str`, *optional*, defaults to `"replace"`):
43
+ Paradigm to follow when decoding bytes to UTF-8. See
44
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
45
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
46
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
47
+ token instead.
48
+ bos_token (`str`, *optional*):
49
+ The beginning of sequence token. Not applicable for this tokenizer.
50
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
51
+ The end of sequence token.
52
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
53
+ The token used for padding, for example when batching sequences of different lengths.
54
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
55
+ Whether or not the model should cleanup the spaces that were added when splitting the input text during the
56
+ tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
57
+ split_special_tokens (`bool`, *optional*, defaults to `False`):
58
+ Whether or not the special tokens should be split during the tokenization process. The default behavior is
59
+ to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
60
+ ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
61
+ '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
62
+ add_eos_token (`bool`, *optional*, defaults to `False`):
63
+ Whether or not to add an `eos_token` at the end of sequences.
64
+ """
65
+
66
+ def __init__(
67
+ self,
68
+ vocab_file,
69
+ merges_file,
70
+ errors="replace",
71
+ unk_token="<|endoftext|>",
72
+ bos_token=None,
73
+ eos_token="<|endoftext|>",
74
+ pad_token="<|endoftext|>",
75
+ clean_up_tokenization_spaces=False,
76
+ split_special_tokens=False,
77
+ add_eos_token=False,
78
+ **kwargs,
79
+ ):
80
+ # The add_eos_token code was inspired by the LlamaTokenizer
81
+ self.add_eos_token = add_eos_token
82
+
83
+ super().__init__(
84
+ vocab_file=vocab_file,
85
+ merges_file=merges_file,
86
+ errors=errors,
87
+ unk_token=unk_token,
88
+ bos_token=bos_token,
89
+ eos_token=eos_token,
90
+ pad_token=pad_token,
91
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
92
+ split_special_tokens=split_special_tokens,
93
+ add_eos_token=add_eos_token,
94
+ **kwargs,
95
+ )
96
+
97
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
98
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
99
+
100
+ output = token_ids_0 + eos_token_id
101
+
102
+ if token_ids_1 is not None:
103
+ output = output + token_ids_1 + eos_token_id
104
+
105
+ return output
106
+
107
+ def get_special_tokens_mask(
108
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
109
+ ) -> List[int]:
110
+ """
111
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
112
+ special tokens using the tokenizer `prepare_for_model` method.
113
+
114
+ Args:
115
+ token_ids_0 (`List[int]`):
116
+ List of IDs.
117
+ token_ids_1 (`List[int]`, *optional*):
118
+ Optional second list of IDs for sequence pairs.
119
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
120
+ Whether or not the token list is already formatted with special tokens for the model.
121
+
122
+ Returns:
123
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
124
+ """
125
+ if already_has_special_tokens:
126
+ return super().get_special_tokens_mask(
127
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
128
+ )
129
+
130
+ eos_token_id = [1] if self.add_eos_token else []
131
+
132
+ if token_ids_1 is None:
133
+ return ([0] * len(token_ids_0)) + eos_token_id
134
+ return (
135
+ ([0] * len(token_ids_0))
136
+ + eos_token_id
137
+ + ([0] * len(token_ids_1))
138
+ + eos_token_id
139
+ )
140
+
141
+ def create_token_type_ids_from_sequences(
142
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
143
+ ) -> List[int]:
144
+ """
145
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
146
+ sequence pair mask has the following format:
147
+
148
+ ```
149
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
150
+ | first sequence | second sequence |
151
+ ```
152
+
153
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
154
+
155
+ Args:
156
+ token_ids_0 (`List[int]`):
157
+ List of ids.
158
+ token_ids_1 (`List[int]`, *optional*):
159
+ Optional second list of IDs for sequence pairs.
160
+
161
+ Returns:
162
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
163
+ """
164
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
165
+
166
+ output = [0] * len(token_ids_0 + eos_token_id)
167
+
168
+ if token_ids_1 is not None:
169
+ output += [1] * len(token_ids_1 + eos_token_id)
170
+
171
+ return output
172
+
173
+ class Qwen2TokenizerFast(OriginalQwen2TokenizerFast):
174
+ """
175
+ Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
176
+ Byte-Pair-Encoding.
177
+
178
+ Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
179
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
180
+
181
+ ```python
182
+ >>> from transformers import Qwen2TokenizerFast
183
+
184
+ >>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
185
+ >>> tokenizer("Hello world")["input_ids"]
186
+ [9707, 1879]
187
+
188
+ >>> tokenizer(" Hello world")["input_ids"]
189
+ [21927, 1879]
190
+ ```
191
+ This is expected.
192
+
193
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
194
+ refer to this superclass for more information regarding those methods.
195
+
196
+ Args:
197
+ vocab_file (`str`, *optional*):
198
+ Path to the vocabulary file.
199
+ merges_file (`str`, *optional*):
200
+ Path to the merges file.
201
+ tokenizer_file (`str`, *optional*):
202
+ Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
203
+ contains everything needed to load the tokenizer.
204
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
205
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
206
+ token instead. Not applicable to this tokenizer.
207
+ bos_token (`str`, *optional*):
208
+ The beginning of sequence token. Not applicable for this tokenizer.
209
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
210
+ The end of sequence token.
211
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
212
+ The token used for padding, for example when batching sequences of different lengths.
213
+ add_eos_token (`bool`, *optional*, defaults to `False`):
214
+ Whether or not to add an `eos_token` at the end of sequences.
215
+ """
216
+
217
+ slow_tokenizer_class = Qwen2Tokenizer
218
+ padding_side = "left"
219
+
220
+ def __init__(
221
+ self,
222
+ vocab_file=None,
223
+ merges_file=None,
224
+ tokenizer_file=None,
225
+ unk_token="<|endoftext|>",
226
+ bos_token=None,
227
+ eos_token="<|endoftext|>",
228
+ pad_token="<|endoftext|>",
229
+ add_eos_token=False,
230
+ **kwargs,
231
+ ):
232
+ super().__init__(
233
+ vocab_file=vocab_file,
234
+ merges_file=merges_file,
235
+ tokenizer_file=tokenizer_file,
236
+ unk_token=unk_token,
237
+ bos_token=bos_token,
238
+ eos_token=eos_token,
239
+ pad_token=pad_token,
240
+ **kwargs,
241
+ )
242
+
243
+ self._add_eos_token = add_eos_token
244
+ self.update_post_processor()
245
+
246
+ def update_post_processor(self):
247
+ """
248
+ Updates the underlying post processor with the current `eos_token`.
249
+ """
250
+ eos = self.eos_token
251
+ eos_token_id = self.eos_token_id
252
+ if eos is None and self.add_eos_token:
253
+ raise ValueError("add_eos_token = True but eos_token = None")
254
+
255
+ single = f"$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
256
+ pair = f"{single} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
257
+
258
+ special_tokens = []
259
+ if self.add_eos_token:
260
+ special_tokens.append((eos, eos_token_id))
261
+ self._tokenizer.post_processor = processors.TemplateProcessing(
262
+ single=single, pair=pair, special_tokens=special_tokens
263
+ )
264
+
265
+ @property
266
+ def add_eos_token(self):
267
+ return self._add_eos_token
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "auto_map": {
34
+ "AutoTokenizer": [
35
+ "tokenization_qwen.Qwen2Tokenizer",
36
+ "tokenization_qwen.Qwen2TokenizerFast"
37
+ ]
38
+ },
39
+ "bos_token": null,
40
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
41
+ "clean_up_tokenization_spaces": false,
42
+ "eos_token": "<|endoftext|>",
43
+ "errors": "replace",
44
+ "max_length": 512,
45
+ "model_max_length": 32768,
46
+ "pad_to_multiple_of": null,
47
+ "pad_token": "<|endoftext|>",
48
+ "pad_token_type_id": 0,
49
+ "padding_side": "left",
50
+ "split_special_tokens": false,
51
+ "stride": 0,
52
+ "tokenizer_class": "Qwen2Tokenizer",
53
+ "truncation_side": "right",
54
+ "truncation_strategy": "longest_first",
55
+ "unk_token": null
56
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff