--- license: apache-2.0 license_name: qwen license_link: https://huggingface.co./Qwen/Qwen2.5-1.5B-Instruct/blob/main/LICENSE tags: - video - video-understanding - vision - multimodal - conversational - qwen - custom_code - instruction-tuning datasets: - ApolloBench - Video-MME - MLVU - LongVideoBench - NExTQA - PerceptionTest inference: true pipeline_tag: video-text-to-text --- # Apollo: An Exploration of Video Understanding in Large Multimodal Models Apollo is a family of Large Multimodal Models (LMMs) that push the state-of-the-art in video understanding. It supports tasks including: - Long-form video comprehension - Temporal reasoning - Complex video question-answering - Multi-turn conversations grounded in video content Apollo models excel at handling hour-long videos, balancing speed and accuracy through strategic design decisions. Our models outperform most 7B competitors at just 3B parameters and even rival 30B-scale models. **Key Highlights:** - **Scaling Consistency**: Design decisions validated on smaller models and datasets effectively transfer to larger scales, reducing computation and experimentation costs. - **Efficient Video Sampling**: fps sampling and advanced token resampling strategies (e.g., Perceiver) yield stronger temporal perception. - **Encoder Synergies**: Combining SigLIP-SO400M (image) with InternVideo2 (video) delivers a robust representation, outperforming single encoders on temporal tasks. - **ApolloBench**: A streamlined evaluation benchmark (41x faster) that focuses on true video understanding capabilities. ## Quick Start **Installation:** ```bash pip install -e . pip install flash-attn --no-build-isolation ``` **Inference Example:** ```python import torch from transformers import AutoModelForCausalLM from apollo.mm_utils import ( KeywordsStoppingCriteria, tokenizer_mm_token, ApolloMMLoader ) from apollo.conversations import conv_templates, SeparatorStyle from huggingface_hub import snapshot_download model_url = "Apollo-LMMs/Apollo-3B-t32" model_path = snapshot_download(model_url, repo_type="model") device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, low_cpu_mem_usage=True ).to(device=device, dtype=torch.bfloat16) tokenizer = model.tokenizer vision_processors = model.vision_tower.vision_processor config = model.config num_repeat_token = config.mm_connector_cfg['num_output_tokens'] mm_processor = ApolloMMLoader( vision_processors, config.clip_duration, frames_per_clip=4, clip_sampling_ratio=0.65, model_max_length=config.model_max_length, device=device, num_repeat_token=num_repeat_token ) video_path = "path/to/video.mp4" question = "Describe this video in detail" mm_data, replace_string = mm_processor.load_video(video_path) conv = conv_templates["qwen_2"].copy() conv.append_message(conv.roles[0], replace_string + "\n\n" + question) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_mm_token(prompt, tokenizer, return_tensors="pt").unsqueeze(0).to(device) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, vision_input=[mm_data], data_types=['video'], do_sample=True, temperature=0.4, max_new_tokens=256, top_p=0.7, use_cache=True, num_beams=1, stopping_criteria=[stopping_criteria] ) pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(pred) ``` ## Citation If you find this project useful, please consider citing: ```BibTeX @article{zohar2024apollo, title={Apollo: An Exploration of Video Understanding in Large Multimodal Models}, author={Zohar, Orr and Wang, Xiaohan and Dubois, Yann and Mehta, Nikhil and Xiao, Tong and Hansen-Estruch, Philippe and Yu, Licheng and Wang, Xiaofang and Juefei-Xu, Felix and Zhang, Ning and Yeung-Levy, Serena and Xia, Xide}, journal={arXiv preprint arXiv:2412.10360}, year={2024} } ``` For more details, visit the [project website](https://apollo-lmms.github.io) or check out the [paper](https://arxiv.org/abs/2412.10360).