--- license: cc-by-nc-sa-4.0 --- **Restore missing RGB channels** Restore a missing channel of a RGB image by using ControlNet to guide image generation of Stable Diffusion to infer missing channel from the other two channels. * See accompanying discussion at [github.com - Channels RGB](https://github.com/lllyasviel/ControlNet/discussions/567) with detailed report and evaluations. * To restore images with missing channels you can use [this space](https://huggingface.co./spaces/GeroldMeisinger/channels). * For evaluation images see the corresponding .zip's at "files". * To run your own evaluations you can use [this script at gitlab.com](https://gitlab.com/-/snippets/3602096). # Training ``` accelerate launch train_controlnet.py \ --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \ --train_batch_size=4 \ --gradient_accumulation_steps=8 \ --proportion_empty_prompts=0.5 --mixed_precision="fp16" \ --learning_rate=1e-5 \ --enable_xformers_memory_efficient_attention \ --use_8bit_adam \ --set_grads_to_none \ --seed=0 \ --num_train_epochs=2 ``` # Image dataset * laion2B-en aesthetics>=6.5 dataset * --min_image_size 512 --max_aspect_ratio 2 --resize_mode="center_crop" --image_size 512 * Cleaned with `fastdup` default settings * Data augmented with right-left flipped images * Resulting in 214244 images * Set whole channel to 0 by alternating between R-G-B channels