--- license: mit language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification tags: - agriculture widget: - text: "paddy pest" example_title: "Example- pest" - text: "how do I apply for PM-Kisan" example_title: "Example- scheme" - text: "Will it rain today" example_title: "Example- weather" --- # Agri-flow Classification Model This model classifies grievances into five distinct buckets: - **Label 0**: agricultural_scheme - **Label 1**: agriculture - **Label 2**: pest - **Label 3**: seed - **Label 4**: weather - **Label 5**: price - **Label 6**: non_agri ## Description of the Buckets 1. **agricultural_scheme**: The farmer query is about schemes in Odisha 2. **agriculture**: General agri queries 3. **pest**: The farmer query is about pests 4. **seed**: The farmer query is about seed varieties 5. **weather** : The farmer query is asking about the weather for a district /place e.g. : 'What's the weather forecast for Sundargarh?' 6. **price** : The farmer query is asking about the price of some crop e.g. 'Price for paddy' 6. **non_agri** : The farmer query is just some salutation or unrelated to agri ## Training Metrics The following training metrics were observed over 10 epochs: Epoch 1/1000 - Loss: 0.8210 - Accuracy: 0.7443 - F1 Score: 0.7360 Validation Accuracy: 0.9037 Validation F1 Score: 0.9022 Epoch 2/1000 - Loss: 0.2868 - Accuracy: 0.9199 - F1 Score: 0.9197 Validation Accuracy: 0.9241 Validation F1 Score: 0.9236 Epoch 3/1000 - Loss: 0.1620 - Accuracy: 0.9536 - F1 Score: 0.9534 Validation Accuracy: 0.9408 Validation F1 Score: 0.9407 Epoch 4/1000 - Loss: 0.0975 - Accuracy: 0.9698 - F1 Score: 0.9698 Validation Accuracy: 0.9457 Validation F1 Score: 0.9461 Epoch 5/1000 - Loss: 0.0722 - Accuracy: 0.9777 - F1 Score: 0.9777 Validation Accuracy: 0.9518 Validation F1 Score: 0.9520 Epoch 6/1000 - Loss: 0.0570 - Accuracy: 0.9801 - F1 Score: 0.9801 Validation Accuracy: 0.9574 Validation F1 Score: 0.9573 Epoch 7/1000 - Loss: 0.0426 - Accuracy: 0.9838 - F1 Score: 0.9838 Validation Accuracy: 0.9601 Validation F1 Score: 0.9601 Epoch 8/1000 - Loss: 0.0403 - Accuracy: 0.9850 - F1 Score: 0.9850 Validation Accuracy: 0.9646 Validation F1 Score: 0.9646 Epoch 9/1000 - Loss: 0.0340 - Accuracy: 0.9853 - F1 Score: 0.9853 Validation Accuracy: 0.9623 Validation F1 Score: 0.9624 Epoch 10/1000 - Loss: 0.0307 - Accuracy: 0.9857 - F1 Score: 0.9857 Validation Accuracy: 0.9640 Validation F1 Score: 0.9640 Epoch 11/1000 - Loss: 0.0297 - Accuracy: 0.9873 - F1 Score: 0.9873 Validation Accuracy: 0.9618 Validation F1 Score: 0.9618 Epoch 12/1000 - Loss: 0.0279 - Accuracy: 0.9867 - F1 Score: 0.9867 Validation Accuracy: 0.9607 Validation F1 Score: 0.9607