--- language: - en license: mit library_name: peft datasets: - timdettmers/openassistant-guanaco - tatsu-lab/alpaca - BI55/MedText pipeline_tag: question-answering base_model: meta-llama/Llama-2-13b-chat-hf --- Here is a README.md explaining how to run the Archimedes model locally: # Archimedes Model This README provides instructions for running the Archimedes conversational AI assistant locally. ## Requirements - Python 3.6+ - [Transformers](https://huggingface.co./docs/transformers/installation) - [Peft](https://github.com/hazyresearch/peft) - PyTorch - Access to the LLAMA 2 model files or a cloned public model Install requirements: ``` !pip install transformers !pip install peft !pip install torch !pip install datasets !pip install bitsandbytes ``` ## Usage ```python import transformers from peft import LoraConfig, get_peft_model import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig login() # Need access to the gated model. # Load LLAMA 2 model model_name = "meta-llama/Llama-2-13b-chat-hf" # Quantization configuration bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True ) # Load LoRA configuration lora_config = LoraConfig.from_pretrained('harpyerr/archimedes-300s-7b-chat') model = get_peft_model(model, lora_config) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token # Define prompt text = "Can you tell me who made Space-X?" prompt = "You are a helpful assistant. Please provide an informative response. \n\n" + text # Generate response device = "cuda:0" inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` This loads the LLAMA 2 model, applies 4-bit quantization and LoRA optimizations, constructs a prompt, and generates a response. See the [docs](https://huggingface.co./docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) for more details.