Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1089.27 +/- 294.61
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fd4b6eb44326346d0031eb9dea32e6db2f57b23cf634b668bae4c570fb34bf8
|
3 |
+
size 129010
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f097761eca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f097761ed30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f097761edc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f097761ee50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f097761eee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f097761ef70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0977623040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f09776230d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0977623160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f09776231f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0977623280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0977623310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0977625240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678832195232289220,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJbxNT9Vz6g/ac3xPvRNpT/I5bY/jj/fvgactr5VBe69LXsfv6TaQ785hC+/P3BJP5uWrT74Sjs/fnoKviEWmz+Zd6M/0Y8hvvOPcL8tpSI+g45hv1299DoxQoU/a/UPP+ozpb9HjvQ+t1LsPlHQZD+VBsW+HmMcv/IpqT6F142/zsgHPR6wfj0x+aO9YOU/vwV0CL+teMW85IsfPxox17yh5U2/+6Z+uzY8HT/TaIY8p25vP97vBzyboaQ+xgFiPKDRYb8gJ/Y8WUCiPq4wg7ykWUY/R470PrdS7D5R0GQ/SmKbP11ylj0lSyg/lqCbPy/k/z/hLeu8oE3rvUV4tr51B/s8qGyYP2hbNb+r8Yk/HnLxPvw1pj+OC86+wELJP/N2pT9oIEG+TgSOvz1sKz9lmGa/LmuGPopuvT8zFwe96jOlv0eO9D63Uuw+UdBkP140yD7NiAdAYjXCvjEUFj/CDJ0/kTCovkIiSb2jyFE/vosyvjMq1T+vzAY90QOGP40fez77ZdA+/bx7vym1Xj55uoY/lutPv+MbTb9HXAJANIhhvylb9jtT3CM+cHgvv6RZRj9HjvQ+t1LsPlHQZD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADzIPg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFOHOvQAAAACVb9+/AAAAAEnzAz4AAAAAKvTvPwAAAAALML47AAAAAFkc9T8AAAAAnO+YvQAAAACq9PW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuYKfNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCU51T0AAAAA2xTovwAAAADrzgc9AAAAABYu/j8AAAAA3s2CPQAAAAAZs9s/AAAAAEqZaL0AAAAAkuLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAJeLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICBtF29AAAAAMnO9b8AAAAAtDXbvAAAAACzOtk/AAAAADf8wb0AAAAAnMj8PwAAAAAIlLM9AAAAAPZv4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/4fe1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA047TPAAAAAASeADAAAAAAHw4o70AAAAAxlXvPwAAAAAMOQc+AAAAAFXz5z8AAAAAujHNPQAAAAAT8ui/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJydVfmcOLCMAWyUTegDjAF0lEdAqvDF0vGp/HV9lChoBkdAnXDUqc3ERGgHTegDaAhHQKryQcrAgxJ1fZQoaAZHQJ4lk9ovi99oB03oA2gIR0Cq9oI+OfdzdX2UKGgGR0CcigM7U5MlaAdN6ANoCEdAqvjgZOzpo3V9lChoBkdAn/ieTeO4omgHTegDaAhHQKr9cHKOktV1fZQoaAZHQKAS0w0O3DxoB03oA2gIR0Cq/wKohpxndX2UKGgGR0CaJTYJVsDXaAdN6ANoCEdAqwPy/ATIvXV9lChoBkdAmuLaQ7tAs2gHTegDaAhHQKsHZbcoH9p1fZQoaAZHQJ+OOTLW7OFoB03oA2gIR0CrDdEJa7mMdX2UKGgGR0Ccl/CEHt4SaAdN6ANoCEdAqw9Yx1xKhHV9lChoBkdAlz5T238XN2gHTegDaAhHQKsTvm5Dqnp1fZQoaAZHQJllfzGxUvRoB03oA2gIR0CrFg/4ZdfLdX2UKGgGR0CeGTpaRp1zaAdN6ANoCEdAqxpO65Gz8nV9lChoBkdAlsHO9SMtLGgHTegDaAhHQKsb3C4SYgJ1fZQoaAZHQJAsRDTjNpxoB03oA2gIR0CrIA0O/cnFdX2UKGgGR0CEizvsJIDpaAdN6ANoCEdAqyL2NDMNdHV9lChoBkdAiM5pqqOtGWgHTegDaAhHQKspTv1lGw11fZQoaAZHQJe9xYvFm4BoB03oA2gIR0CrK5mwJPZadX2UKGgGR0CYMT4VRDTjaAdN6ANoCEdAqy/nNs3yZ3V9lChoBkdAmO/xplBhQWgHTegDaAhHQKsyOT6i0v51fZQoaAZHQJmqhLXcxj9oB03oA2gIR0CrNoB2fTTfdX2UKGgGR0CaYUCAc1fmaAdN6ANoCEdAqzgHmvGIbnV9lChoBkdAin6vzWf9P2gHTegDaAhHQKs8QvgWJrN1fZQoaAZHQJ8Hd3GGVRloB03oA2gIR0CrPqvrv9cbdX2UKGgGR0CYMBcCo0hvaAdN6ANoCEdAq0Rt+PRzBHV9lChoBkdAmru3Pqs2emgHTegDaAhHQKtG0D1XeWR1fZQoaAZHQHPnp4jbBXVoB03oA2gIR0CrTI0GNaQndX2UKGgGR0Cd1+K1XvH+aAdN6ANoCEdAq08Np0wJxHV9lChoBkdAhLj1E/jbSWgHTegDaAhHQKtTfY1YQrd1fZQoaAZHQHc/e3Ytg8doB03oA2gIR0CrVQbiZOSGdX2UKGgGR0CYqOQbuMMraAdN6ANoCEdAq1k3okiUxHV9lChoBkdAlv5sinpB5WgHTegDaAhHQKtbl8sMAm11fZQoaAZHQJZwa72+PBBoB03oA2gIR0CrYGl3IMjNdX2UKGgGR0CIgnFDOTq0aAdN6ANoCEdAq2KS9EkSmXV9lChoBkdAleXmvr4WUWgHTegDaAhHQKtpHaKUFB91fZQoaAZHQJly3WFvhqFoB03oA2gIR0Cra3qCxu89dX2UKGgGR0CWM0QtSQ5naAdN6ANoCEdAq2+8figkC3V9lChoBkdAmT9qoZQ53mgHTegDaAhHQKtxUOWjXWh1fZQoaAZHQICClclgMMJoB03oA2gIR0CrddwIt16mdX2UKGgGR0B8qzp9qk/KaAdN6ANoCEdAq3hvbqQiinV9lChoBkdAdJtNTtLL6mgHTegDaAhHQKt9Am3OObR1fZQoaAZHQHPh8MqjJuFoB03oA2gIR0Crf0vT5O8DdX2UKGgGR0B6kLBacI7eaAdN6ANoCEdAq4XfgpBomHV9lChoBkdAfW4p3os7MmgHTegDaAhHQKuI47p3X7N1fZQoaAZHQHyM9CiRGMJoB03oA2gIR0CrjVqAz544dX2UKGgGR0CKvhAVO9FnaAdN6ANoCEdAq47258Sf2HV9lChoBkdAcSms8xKxs2gHTegDaAhHQKuTU8ifQKN1fZQoaAZHQISZP31zySVoB03oA2gIR0Crlbuy/sVtdX2UKGgGR0B8/HXOGCZnaAdN6ANoCEdAq5oX2EkB0nV9lChoBkdAjPHuUMXrMWgHTegDaAhHQKub201IiC91fZQoaAZHQID2ywUxmCloB03oA2gIR0CrolcF6iTMdX2UKGgGR0Bxw4F5fMOgaAdN6ANoCEdAq6YPZAY51nV9lChoBkdAif2bnxJ/X2gHTegDaAhHQKuqY0fozN51fZQoaAZHQIAFwn8baRJoB03oA2gIR0Crq+MgMc6vdX2UKGgGR0B2Kjgflp49aAdNaQJoCEdAq63OsYEW7HV9lChoBkdARmcv9LpRoGgHTegDaAhHQKuwKgyuZCx1fZQoaAZHQHqnAA+6iCdoB03oA2gIR0Crtvc+zMRpdX2UKGgGR0B0zZhBqsU7aAdN6ANoCEdAq7h91+y7gHV9lChoBkdAlB72/N7jUGgHTegDaAhHQKu6igQpWmx1fZQoaAZHQIBDDXUYsNFoB03oA2gIR0CrvgdQXQ+mdX2UKGgGR0CbGHC2MKkVaAdN6ANoCEdAq8cZnJ1aGHV9lChoBkdAlcnZY9xIa2gHTegDaAhHQKvIszPa+N91fZQoaAZHQJqOn+xW1dBoB03oA2gIR0CrypL4WUKRdX2UKGgGR0CUkyVBlcyFaAdN6ANoCEdAq8zyXY150XV9lChoBkdAmxGXKSxJNGgHTegDaAhHQKvToP7N0Nl1fZQoaAZHQJomvidat9xoB03oA2gIR0Cr1SXo9s7/dX2UKGgGR0Cc3qybhFVlaAdN6ANoCEdAq9cC6MBIWnV9lChoBkdAk1+OqWC2+mgHTegDaAhHQKvZ45S3sol1fZQoaAZHQJ1hJe0G/vhoB03oA2gIR0Cr4/D9fkWAdX2UKGgGR0B0CZw97ngYaAdN6ANoCEdAq+WHAGjbjHV9lChoBkdAdvd6I3zcymgHTegDaAhHQKvndoWYWtV1fZQoaAZHQJOkNu0kWyloB03oA2gIR0Cr6eadlNDddX2UKGgGR0CYF3vGp++eaAdN6ANoCEdAq/D44uK4x3V9lChoBkdAmEfpJsfq5mgHTegDaAhHQKvykMw1zhh1fZQoaAZHQJaJQDq4YrJoB03oA2gIR0Cr9It5t3wDdX2UKGgGR0CYo4Ad4mkWaAdN6ANoCEdAq/cKLQ5WBHV9lChoBkdAmO8l8Ti84GgHTegDaAhHQKwBEr1/UfB1fZQoaAZHQJrmP9FWn0loB03oA2gIR0CsAs/bblBAdX2UKGgGR0CYwcMNMGoraAdN6ANoCEdArATShvitJXV9lChoBkdAgCHTFVDKHWgHTegDaAhHQKwHSCEpRXR1fZQoaAZHQJrmoi1RceNoB03oA2gIR0CsDgt+CsfadX2UKGgGR0CaF2U83dbgaAdN6ANoCEdArA+MuQIUrXV9lChoBkdAdIzjZ+QU6GgHTegDaAhHQKwRb/d69kB1fZQoaAZHQJP55/G2kSFoB03oA2gIR0CsE9dHDrJKdX2UKGgGR0CS4iji4rjHaAdN6ANoCEdArBzbebd8A3V9lChoBkdAlDmdT1kDp2gHTegDaAhHQKwfL/smfGx1fZQoaAZHQJq99BfKISFoB03oA2gIR0CsIVSPEKmbdX2UKGgGR0CZ9xHKwIMSaAdN6ANoCEdArCO1z+3pfXV9lChoBkdAlY1kZFXq7mgHTegDaAhHQKwqXtIkJKJ1fZQoaAZHQJt4aONo8IRoB03oA2gIR0CsK+BOP/70dX2UKGgGR0CcL9BpYcNpaAdN6ANoCEdArC3AnDziCXV9lChoBkdAnV83buc+aGgHTegDaAhHQKwwLklu3tt1fZQoaAZHQJgMqqtHQQdoB03oA2gIR0CsOEJcxCY1dX2UKGgGR0CPMkebutwKaAdN6ANoCEdArDqs6RyOrHV9lChoBkdAljQgTIvJzWgHTegDaAhHQKw9jL7Gecx1fZQoaAZHQJcml4qwyIpoB03oA2gIR0CsQEzzVc2SdX2UKGgGR0CZkXpEx7AtaAdN6ANoCEdArEcPVG0/nnV9lChoBkdAmNPzV+Zw42gHTegDaAhHQKxImQCCBf91fZQoaAZHQJxa8wUQCjloB03oA2gIR0CsSnyCWeH0dX2UKGgGR0Cdc1tDD0lJaAdN6ANoCEdArEzbqptJnXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:795e5cb5a7f358d3b077215bdcb1956c547e0fa92d2ca6132c1a0e40ead75767
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:071e5690cafc0ced75c8ef90c23226f3ed9e9c9293a570ecda08924daeac1e91
|
3 |
+
size 56830
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f097761eca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f097761ed30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f097761edc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f097761ee50>", "_build": "<function ActorCriticPolicy._build at 0x7f097761eee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f097761ef70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0977623040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f09776230d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0977623160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f09776231f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0977623280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0977623310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0977625240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678832195232289220, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJbxNT9Vz6g/ac3xPvRNpT/I5bY/jj/fvgactr5VBe69LXsfv6TaQ785hC+/P3BJP5uWrT74Sjs/fnoKviEWmz+Zd6M/0Y8hvvOPcL8tpSI+g45hv1299DoxQoU/a/UPP+ozpb9HjvQ+t1LsPlHQZD+VBsW+HmMcv/IpqT6F142/zsgHPR6wfj0x+aO9YOU/vwV0CL+teMW85IsfPxox17yh5U2/+6Z+uzY8HT/TaIY8p25vP97vBzyboaQ+xgFiPKDRYb8gJ/Y8WUCiPq4wg7ykWUY/R470PrdS7D5R0GQ/SmKbP11ylj0lSyg/lqCbPy/k/z/hLeu8oE3rvUV4tr51B/s8qGyYP2hbNb+r8Yk/HnLxPvw1pj+OC86+wELJP/N2pT9oIEG+TgSOvz1sKz9lmGa/LmuGPopuvT8zFwe96jOlv0eO9D63Uuw+UdBkP140yD7NiAdAYjXCvjEUFj/CDJ0/kTCovkIiSb2jyFE/vosyvjMq1T+vzAY90QOGP40fez77ZdA+/bx7vym1Xj55uoY/lutPv+MbTb9HXAJANIhhvylb9jtT3CM+cHgvv6RZRj9HjvQ+t1LsPlHQZD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADzIPg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFOHOvQAAAACVb9+/AAAAAEnzAz4AAAAAKvTvPwAAAAALML47AAAAAFkc9T8AAAAAnO+YvQAAAACq9PW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuYKfNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCU51T0AAAAA2xTovwAAAADrzgc9AAAAABYu/j8AAAAA3s2CPQAAAAAZs9s/AAAAAEqZaL0AAAAAkuLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAJeLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICBtF29AAAAAMnO9b8AAAAAtDXbvAAAAACzOtk/AAAAADf8wb0AAAAAnMj8PwAAAAAIlLM9AAAAAPZv4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/4fe1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA047TPAAAAAASeADAAAAAAHw4o70AAAAAxlXvPwAAAAAMOQc+AAAAAFXz5z8AAAAAujHNPQAAAAAT8ui/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJydVfmcOLCMAWyUTegDjAF0lEdAqvDF0vGp/HV9lChoBkdAnXDUqc3ERGgHTegDaAhHQKryQcrAgxJ1fZQoaAZHQJ4lk9ovi99oB03oA2gIR0Cq9oI+OfdzdX2UKGgGR0CcigM7U5MlaAdN6ANoCEdAqvjgZOzpo3V9lChoBkdAn/ieTeO4omgHTegDaAhHQKr9cHKOktV1fZQoaAZHQKAS0w0O3DxoB03oA2gIR0Cq/wKohpxndX2UKGgGR0CaJTYJVsDXaAdN6ANoCEdAqwPy/ATIvXV9lChoBkdAmuLaQ7tAs2gHTegDaAhHQKsHZbcoH9p1fZQoaAZHQJ+OOTLW7OFoB03oA2gIR0CrDdEJa7mMdX2UKGgGR0Ccl/CEHt4SaAdN6ANoCEdAqw9Yx1xKhHV9lChoBkdAlz5T238XN2gHTegDaAhHQKsTvm5Dqnp1fZQoaAZHQJllfzGxUvRoB03oA2gIR0CrFg/4ZdfLdX2UKGgGR0CeGTpaRp1zaAdN6ANoCEdAqxpO65Gz8nV9lChoBkdAlsHO9SMtLGgHTegDaAhHQKsb3C4SYgJ1fZQoaAZHQJAsRDTjNpxoB03oA2gIR0CrIA0O/cnFdX2UKGgGR0CEizvsJIDpaAdN6ANoCEdAqyL2NDMNdHV9lChoBkdAiM5pqqOtGWgHTegDaAhHQKspTv1lGw11fZQoaAZHQJe9xYvFm4BoB03oA2gIR0CrK5mwJPZadX2UKGgGR0CYMT4VRDTjaAdN6ANoCEdAqy/nNs3yZ3V9lChoBkdAmO/xplBhQWgHTegDaAhHQKsyOT6i0v51fZQoaAZHQJmqhLXcxj9oB03oA2gIR0CrNoB2fTTfdX2UKGgGR0CaYUCAc1fmaAdN6ANoCEdAqzgHmvGIbnV9lChoBkdAin6vzWf9P2gHTegDaAhHQKs8QvgWJrN1fZQoaAZHQJ8Hd3GGVRloB03oA2gIR0CrPqvrv9cbdX2UKGgGR0CYMBcCo0hvaAdN6ANoCEdAq0Rt+PRzBHV9lChoBkdAmru3Pqs2emgHTegDaAhHQKtG0D1XeWR1fZQoaAZHQHPnp4jbBXVoB03oA2gIR0CrTI0GNaQndX2UKGgGR0Cd1+K1XvH+aAdN6ANoCEdAq08Np0wJxHV9lChoBkdAhLj1E/jbSWgHTegDaAhHQKtTfY1YQrd1fZQoaAZHQHc/e3Ytg8doB03oA2gIR0CrVQbiZOSGdX2UKGgGR0CYqOQbuMMraAdN6ANoCEdAq1k3okiUxHV9lChoBkdAlv5sinpB5WgHTegDaAhHQKtbl8sMAm11fZQoaAZHQJZwa72+PBBoB03oA2gIR0CrYGl3IMjNdX2UKGgGR0CIgnFDOTq0aAdN6ANoCEdAq2KS9EkSmXV9lChoBkdAleXmvr4WUWgHTegDaAhHQKtpHaKUFB91fZQoaAZHQJly3WFvhqFoB03oA2gIR0Cra3qCxu89dX2UKGgGR0CWM0QtSQ5naAdN6ANoCEdAq2+8figkC3V9lChoBkdAmT9qoZQ53mgHTegDaAhHQKtxUOWjXWh1fZQoaAZHQICClclgMMJoB03oA2gIR0CrddwIt16mdX2UKGgGR0B8qzp9qk/KaAdN6ANoCEdAq3hvbqQiinV9lChoBkdAdJtNTtLL6mgHTegDaAhHQKt9Am3OObR1fZQoaAZHQHPh8MqjJuFoB03oA2gIR0Crf0vT5O8DdX2UKGgGR0B6kLBacI7eaAdN6ANoCEdAq4XfgpBomHV9lChoBkdAfW4p3os7MmgHTegDaAhHQKuI47p3X7N1fZQoaAZHQHyM9CiRGMJoB03oA2gIR0CrjVqAz544dX2UKGgGR0CKvhAVO9FnaAdN6ANoCEdAq47258Sf2HV9lChoBkdAcSms8xKxs2gHTegDaAhHQKuTU8ifQKN1fZQoaAZHQISZP31zySVoB03oA2gIR0Crlbuy/sVtdX2UKGgGR0B8/HXOGCZnaAdN6ANoCEdAq5oX2EkB0nV9lChoBkdAjPHuUMXrMWgHTegDaAhHQKub201IiC91fZQoaAZHQID2ywUxmCloB03oA2gIR0CrolcF6iTMdX2UKGgGR0Bxw4F5fMOgaAdN6ANoCEdAq6YPZAY51nV9lChoBkdAif2bnxJ/X2gHTegDaAhHQKuqY0fozN51fZQoaAZHQIAFwn8baRJoB03oA2gIR0Crq+MgMc6vdX2UKGgGR0B2Kjgflp49aAdNaQJoCEdAq63OsYEW7HV9lChoBkdARmcv9LpRoGgHTegDaAhHQKuwKgyuZCx1fZQoaAZHQHqnAA+6iCdoB03oA2gIR0Crtvc+zMRpdX2UKGgGR0B0zZhBqsU7aAdN6ANoCEdAq7h91+y7gHV9lChoBkdAlB72/N7jUGgHTegDaAhHQKu6igQpWmx1fZQoaAZHQIBDDXUYsNFoB03oA2gIR0CrvgdQXQ+mdX2UKGgGR0CbGHC2MKkVaAdN6ANoCEdAq8cZnJ1aGHV9lChoBkdAlcnZY9xIa2gHTegDaAhHQKvIszPa+N91fZQoaAZHQJqOn+xW1dBoB03oA2gIR0CrypL4WUKRdX2UKGgGR0CUkyVBlcyFaAdN6ANoCEdAq8zyXY150XV9lChoBkdAmxGXKSxJNGgHTegDaAhHQKvToP7N0Nl1fZQoaAZHQJomvidat9xoB03oA2gIR0Cr1SXo9s7/dX2UKGgGR0Cc3qybhFVlaAdN6ANoCEdAq9cC6MBIWnV9lChoBkdAk1+OqWC2+mgHTegDaAhHQKvZ45S3sol1fZQoaAZHQJ1hJe0G/vhoB03oA2gIR0Cr4/D9fkWAdX2UKGgGR0B0CZw97ngYaAdN6ANoCEdAq+WHAGjbjHV9lChoBkdAdvd6I3zcymgHTegDaAhHQKvndoWYWtV1fZQoaAZHQJOkNu0kWyloB03oA2gIR0Cr6eadlNDddX2UKGgGR0CYF3vGp++eaAdN6ANoCEdAq/D44uK4x3V9lChoBkdAmEfpJsfq5mgHTegDaAhHQKvykMw1zhh1fZQoaAZHQJaJQDq4YrJoB03oA2gIR0Cr9It5t3wDdX2UKGgGR0CYo4Ad4mkWaAdN6ANoCEdAq/cKLQ5WBHV9lChoBkdAmO8l8Ti84GgHTegDaAhHQKwBEr1/UfB1fZQoaAZHQJrmP9FWn0loB03oA2gIR0CsAs/bblBAdX2UKGgGR0CYwcMNMGoraAdN6ANoCEdArATShvitJXV9lChoBkdAgCHTFVDKHWgHTegDaAhHQKwHSCEpRXR1fZQoaAZHQJrmoi1RceNoB03oA2gIR0CsDgt+CsfadX2UKGgGR0CaF2U83dbgaAdN6ANoCEdArA+MuQIUrXV9lChoBkdAdIzjZ+QU6GgHTegDaAhHQKwRb/d69kB1fZQoaAZHQJP55/G2kSFoB03oA2gIR0CsE9dHDrJKdX2UKGgGR0CS4iji4rjHaAdN6ANoCEdArBzbebd8A3V9lChoBkdAlDmdT1kDp2gHTegDaAhHQKwfL/smfGx1fZQoaAZHQJq99BfKISFoB03oA2gIR0CsIVSPEKmbdX2UKGgGR0CZ9xHKwIMSaAdN6ANoCEdArCO1z+3pfXV9lChoBkdAlY1kZFXq7mgHTegDaAhHQKwqXtIkJKJ1fZQoaAZHQJt4aONo8IRoB03oA2gIR0CsK+BOP/70dX2UKGgGR0CcL9BpYcNpaAdN6ANoCEdArC3AnDziCXV9lChoBkdAnV83buc+aGgHTegDaAhHQKwwLklu3tt1fZQoaAZHQJgMqqtHQQdoB03oA2gIR0CsOEJcxCY1dX2UKGgGR0CPMkebutwKaAdN6ANoCEdArDqs6RyOrHV9lChoBkdAljQgTIvJzWgHTegDaAhHQKw9jL7Gecx1fZQoaAZHQJcml4qwyIpoB03oA2gIR0CsQEzzVc2SdX2UKGgGR0CZkXpEx7AtaAdN6ANoCEdArEcPVG0/nnV9lChoBkdAmNPzV+Zw42gHTegDaAhHQKxImQCCBf91fZQoaAZHQJxa8wUQCjloB03oA2gIR0CsSnyCWeH0dX2UKGgGR0Cdc1tDD0lJaAdN6ANoCEdArEzbqptJnXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (896 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1089.266551359964, "std_reward": 294.6073815933653, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T17:46:13.042785"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c03ee4e055590ce64db0958e24fdc3b94872cfe79784a6a2738747de5f692096
|
3 |
+
size 2136
|