File size: 8,720 Bytes
36b5951
e6a52e4
1fd7bf1
 
d2c176b
 
1fd7bf1
 
 
 
 
 
 
 
 
 
ba105f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd7bf1
 
 
 
 
 
a6bfe5f
 
 
1fd7bf1
a6bfe5f
 
 
 
 
 
 
 
 
 
1fd7bf1
 
 
a6bfe5f
 
1fd7bf1
 
a6bfe5f
 
 
 
 
 
 
 
 
1fd7bf1
 
 
a6bfe5f
 
1fd7bf1
 
a6bfe5f
 
 
 
 
 
 
 
 
 
1fd7bf1
 
 
a6bfe5f
 
1fd7bf1
 
a6bfe5f
 
 
 
 
 
 
 
 
 
1fd7bf1
 
 
a6bfe5f
1fd7bf1
a6bfe5f
1fd7bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bfe5f
1fd7bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b5951
d2c176b
 
 
 
89d2495
47f3c45
89d2495
d2c176b
89d2495
d2c176b
 
 
 
 
 
 
 
 
89d2495
d2c176b
 
a69db19
 
d2c176b
 
89d2495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd7bf1
ba105f6
1fd7bf1
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
---
language:
- en
license: apache-2.0
base_model: EleutherAI/pythia-31m
datasets:
- totally-not-an-llm/EverythingLM-data-V3
- databricks/databricks-dolly-15k
- THUDM/webglm-qa
- starfishmedical/webGPT_x_dolly
- Amod/mental_health_counseling_conversations
- sablo/oasst2_curated
- cognitivecomputations/wizard_vicuna_70k_unfiltered
- mlabonne/chatml_dpo_pairs
pipeline_tag: text-generation
widget:
  - messages:
      - role: system
        content: >-
          You are a career counselor. The user will provide you with an individual
          looking for guidance in their professional life, and your task is to assist
          them in determining what careers they are most suited for based on their skills,
          interests, and experience. You should also conduct research into the various
          options available, explain the job market trends in different industries, and
          advice on which qualifications would be beneficial for pursuing particular fields.
      - role: user
        content: Heya!
      - role: assistant
        content: Hi! How may I help you?
      - role: user
        content: >-
          I am interested in developing a career in software engineering. What
          would you recommend me to do?
  - messages:
      - role: system
        content: "You are a helpful assistant who answers user's questions with details and curiosity."
      - role: user
        content: What are some potential applications for quantum computing?
  - messages:
      - role: system
        content: You are a highly knowledgeable assistant. Help the user as much as you can.
      - role: user
        content: What are some steps I can take to become a healthier person?
inference:
  parameters:
    max_new_tokens: 250
    penalty_alpha: 0.5
    top_k: 2
    repetition_penalty: 1.0016
model-index:
- name: Pythia-31M-Chat-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 22.7
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 25.6
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 23.24
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.99
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 0.0
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
      name: Open LLM Leaderboard
---

# A Pythia Chat Model of 31M Parameters

- Base model: [EleutherAI/pythia-31m](https://huggingface.co./EleutherAI/pythia-31m)
- Availability in other ML formats:
  - GGUF: [Felladrin/gguf-Pythia-31M-Chat-v1](https://huggingface.co./Felladrin/gguf-Pythia-31M-Chat-v1)
  - ONNX: [Felladrin/onnx-Pythia-31M-Chat-v1](https://huggingface.co./Felladrin/onnx-Pythia-31M-Chat-v1)

## Recommended prompt format

```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
```

## Recommended inference parameters

```yml
penalty_alpha: 0.5
top_k: 2
repetition_penalty: 1.0016
```

## Datasets and parameters used for training

| Dataset | License Type |
|---------|--------------|
| [totally-not-an-llm/EverythingLM-data-V3](https://huggingface.co./datasets/totally-not-an-llm/EverythingLM-data-V3) | mit |
| [databricks/databricks-dolly-15k](https://huggingface.co./datasets/databricks/databricks-dolly-15k) | cc-by-sa-3.0 |
| [THUDM/webglm-qa](https://huggingface.co./datasets/THUDM/webglm-qa) | apache-2.0 |
| [starfishmedical/webGPT_x_dolly](https://huggingface.co./datasets/starfishmedical/webGPT_x_dolly) | cc-by-sa-3.0 |
| [Amod/mental_health_counseling_conversations](https://huggingface.co./datasets/Amod/mental_health_counseling_conversations) | openrail |
| [sablo/oasst2_curated](https://huggingface.co./datasets/sablo/oasst2_curated) | apache-2.0 |
| [cognitivecomputations/wizard_vicuna_70k_unfiltered](https://huggingface.co./datasets/cognitivecomputations/wizard_vicuna_70k_unfiltered) | apache-2.0 |
| [mlabonne/chatml_dpo_pairs](https://huggingface.co./datasets/mlabonne/chatml_dpo_pairs) | apache-2.0 |

```python
SFTTrainer(
    model,
    train_dataset=train_dataset,
    dataset_text_field="text",
    eval_dataset=eval_dataset,
    max_seq_length=2048,
    packing=True,
    args=TrainingArguments(
        learning_rate=2e-6,
        per_device_train_batch_size=1,
        per_device_eval_batch_size=1,
        gradient_accumulation_steps=16,
        lr_scheduler_type="cosine",
        num_train_epochs=1,
        logging_strategy="steps",
        save_strategy="steps",
        evaluation_strategy="steps",
        logging_steps=10,
        eval_steps=10,
        save_steps=10,
        warmup_steps=50,
        load_best_model_at_end=True,
        metric_for_best_model="eval_loss",
        greater_is_better=False,
        weight_decay=0.01,
        save_total_limit=10,
        neftune_noise_alpha=5,
    ),
    callbacks=[
        EarlyStoppingCallback(
            early_stopping_patience=3,
            early_stopping_threshold=0.005
        ),
    ],
)
```

```python
DPOTrainer(
    model,
    beta=0.1,
    train_dataset=dataset,
    tokenizer=tokenizer,
    eval_dataset=eval_dataset,
    max_length=1536,
    max_prompt_length=1024,
    args=TrainingArguments(
        learning_rate=2e-6,
        per_device_train_batch_size=1,
        per_device_eval_batch_size=1,
        gradient_accumulation_steps=1,
        lr_scheduler_type="cosine",
        num_train_epochs=1,
        logging_strategy="steps",
        save_strategy="steps",
        evaluation_strategy="steps",
        logging_steps=1,
        eval_steps=1,
        save_steps=1,
        warmup_steps=0,
        load_best_model_at_end=True,
        metric_for_best_model="eval_loss",
        greater_is_better=False,
        weight_decay=0.0,
        neftune_noise_alpha=5,
        remove_unused_columns=False,
    ),
    callbacks=[
        EarlyStoppingCallback(
            early_stopping_patience=3,
            early_stopping_threshold=0.005
        ),
    ],
)
```

## [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |19.92|
|AI2 Reasoning Challenge (25-Shot)|22.70|
|HellaSwag (10-Shot)              |25.60|
|MMLU (5-Shot)                    |23.24|
|TruthfulQA (0-shot)              | 0.00|
|Winogrande (5-shot)              |47.99|
|GSM8k (5-shot)                   | 0.00|