ericsorides commited on
Commit
95f7d0f
·
verified ·
1 Parent(s): d196f19

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ base_model:
6
+ - Esperanto/Medical-Whisper-large-1.5b
7
+ tags:
8
+ - generated_from_trainer
9
+ datasets:
10
+ - medical_data
11
+ - Na0s/Primock_med
12
+ model-index:
13
+ - name: Medical_Whisper_large_1.5b
14
+ results: []
15
+ metrics:
16
+ - cer
17
+ - wer
18
+ pipeline_tag: automatic-speech-recognition
19
+ ---
20
+
21
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
22
+ should probably proofread and complete it, then remove this comment. -->
23
+
24
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/em-hmh/huggingface/runs/wjd3chz6)
25
+ # Medical_Whisper_large_1.5b
26
+
27
+ This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the primock_data dataset.
28
+
29
+ ## Model description
30
+
31
+ Fine tuned version of whisper-large-v3 through transfer learning on Doctor/Patient consultations. This version in the ONNX format in fp32 precision. Stay tuned for instructions on how to run this pipeline in OnnxRuntime!
32
+
33
+ ## Intended uses & limitations
34
+
35
+ Medical transcription
36
+
37
+ ## Training and evaluation data
38
+
39
+ Na0s/Primock_med
40
+
41
+ ## Training procedure
42
+
43
+ Exhaustive transfer learning
44
+
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 1e-05
50
+ - train_batch_size: 6
51
+ - eval_batch_size: 6
52
+ - seed: 42
53
+ - gradient_accumulation_steps: 4
54
+ - total_train_batch_size: 24
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: constant_with_warmup
57
+ - lr_scheduler_warmup_steps: 50
58
+ - training_steps: 500
59
+ - mixed_precision_training: Native AMP
60
+
61
+ ### Performance Overview:
62
+
63
+ \| Model Name | WER | CER | Number of Parameters |
64
+ |--------------------|------|------|----------------------|
65
+ | Whisper Tiny | 0.46 | 0.27 | 39M |
66
+ | Whisper Base | 0.42 | 0.26 | 74M |
67
+ | Whisper Small | 0.39 | 0.26 | 244M |
68
+ | Whisper Medium | 0.37 | 0.23 | 769M |
69
+ | Whisper Large v3 | 0.33 | 0.18 | 1.55B |
70
+ | **Whisper Medical**| **0.19** | **0.10** | **1.55B** |
71
+
72
+ **Performance of foundation Whispers vs Medical Whisper on the Validation set.**
73
+
74
+ | Model Name | WER | CER | Number of Parameters |
75
+ |--------------------|------|------|----------------------|
76
+ | **Whisper Medical**| **0.24** | **0.13** | **1.55B** |
77
+
78
+ **Table: Performance of Medical Whisper on the Test set.**
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.42.4
84
+ - Pytorch 2.3.1+cu121
85
+ - Datasets 2.20.0
86
+ - Tokenizers 0.19.1