Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
base_model:
|
6 |
+
- Esperanto/Medical-Whisper-large-1.5b
|
7 |
+
tags:
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- medical_data
|
11 |
+
- Na0s/Primock_med
|
12 |
+
model-index:
|
13 |
+
- name: Medical_Whisper_large_1.5b
|
14 |
+
results: []
|
15 |
+
metrics:
|
16 |
+
- cer
|
17 |
+
- wer
|
18 |
+
pipeline_tag: automatic-speech-recognition
|
19 |
+
---
|
20 |
+
|
21 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
22 |
+
should probably proofread and complete it, then remove this comment. -->
|
23 |
+
|
24 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/em-hmh/huggingface/runs/wjd3chz6)
|
25 |
+
# Medical_Whisper_large_1.5b
|
26 |
+
|
27 |
+
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the primock_data dataset.
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
Fine tuned version of whisper-large-v3 through transfer learning on Doctor/Patient consultations. This version in the ONNX format in fp32 precision. Stay tuned for instructions on how to run this pipeline in OnnxRuntime!
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
Medical transcription
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
Na0s/Primock_med
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
Exhaustive transfer learning
|
44 |
+
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 1e-05
|
50 |
+
- train_batch_size: 6
|
51 |
+
- eval_batch_size: 6
|
52 |
+
- seed: 42
|
53 |
+
- gradient_accumulation_steps: 4
|
54 |
+
- total_train_batch_size: 24
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: constant_with_warmup
|
57 |
+
- lr_scheduler_warmup_steps: 50
|
58 |
+
- training_steps: 500
|
59 |
+
- mixed_precision_training: Native AMP
|
60 |
+
|
61 |
+
### Performance Overview:
|
62 |
+
|
63 |
+
\| Model Name | WER | CER | Number of Parameters |
|
64 |
+
|--------------------|------|------|----------------------|
|
65 |
+
| Whisper Tiny | 0.46 | 0.27 | 39M |
|
66 |
+
| Whisper Base | 0.42 | 0.26 | 74M |
|
67 |
+
| Whisper Small | 0.39 | 0.26 | 244M |
|
68 |
+
| Whisper Medium | 0.37 | 0.23 | 769M |
|
69 |
+
| Whisper Large v3 | 0.33 | 0.18 | 1.55B |
|
70 |
+
| **Whisper Medical**| **0.19** | **0.10** | **1.55B** |
|
71 |
+
|
72 |
+
**Performance of foundation Whispers vs Medical Whisper on the Validation set.**
|
73 |
+
|
74 |
+
| Model Name | WER | CER | Number of Parameters |
|
75 |
+
|--------------------|------|------|----------------------|
|
76 |
+
| **Whisper Medical**| **0.24** | **0.13** | **1.55B** |
|
77 |
+
|
78 |
+
**Table: Performance of Medical Whisper on the Test set.**
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.42.4
|
84 |
+
- Pytorch 2.3.1+cu121
|
85 |
+
- Datasets 2.20.0
|
86 |
+
- Tokenizers 0.19.1
|