Erland commited on
Commit
5b9826a
·
1 Parent(s): 6feabca

Second Commit - More steps and more Env

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -225.35 +/- 90.44
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 249.15 +/- 17.33
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa54a8fe440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa54a8fe4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa54a8fe560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa54a8fe5f0>", "_build": "<function ActorCriticPolicy._build at 0x7fa54a8fe680>", "forward": "<function ActorCriticPolicy.forward at 0x7fa54a8fe710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa54a8fe7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa54a8fe830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa54a8fe8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa54a8fe950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa54a8fe9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa54a93bd50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651683866.906479, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIALq72k1me7hh2SPQMySL0Qzrs85LssPgAAAAAAAIA/4GuRPmD64j5r7O88EuXVvtXuiD3UHCW8AAAAAAAAAACTkIs+m8uVPnH8P71Fi0e+ogz7PNILVr0AAAAAAAAAANraDz7XISQ/IDSDPTXkz77/+Bc+lQzBPQAAAAAAAAAAGng6vrRVuD+CRMm+nsNOvo56VL1gvTC7AAAAAAAAAACaQVk7Vhm0PyHpqz5JWTG+U0x7u9HCm70AAAAAAAAAAN7jLr+0Uk+++FS4PC5qE7v7nBa+JkQKNQAAgD8AAIA/Y02HPrOyNT/ZCAw+d/Dcvo3DqTzOiI89AAAAAAAAAABAsy4+Bn2dP4iMiz5vP7i+W/XXPB7VH70AAAAAAAAAAI1i1j2JgyM/MisqPcsM/74t+Z876nylPAAAAAAAAAAAYpEDPwAjzL32y6M5Wi7NN9d8xb3jlmm3AACAPwAAgD8A+5a99rKuPwYWEL/XmEy+JISLPfX4XT0AAAAAAAAAAGaQeTxHE64+jhEvPvPbZr4Jaxw9s2THPQAAAAAAAAAAzeyJvH4sqT9VIeq9xnV3vkrYwjwYh1o8AAAAAAAAAACN4gA+crZvP045Mj6l45i+97JCPI7tfj0AAAAAAAAAAJpjx7z0vKE/tosZvu783r7NihO9BitvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILh1znrFPQUCUhpRSlIwBbJRLf4wBdJRHQGl7CMglnh91fZQoaAZoCWgPQwiGyypsBvAkwJSGlFKUaBVLh2gWR0BpglY8uBczdX2UKGgGaAloD0MIaeId4EmXT8CUhpRSlGgVS5VoFkdAaYRL0SRKYnV9lChoBmgJaA9DCJPGaB1VfSjAlIaUUpRoFUtlaBZHQGmRd0JWvKV1fZQoaAZoCWgPQwjqBDQRNqVSwJSGlFKUaBVLu2gWR0Bplsk8ifQKdX2UKGgGaAloD0MIhq5EoPoDOcCUhpRSlGgVS5VoFkdAaZm6hg3Lm3V9lChoBmgJaA9DCDJXBtUGz0DAlIaUUpRoFUuBaBZHQGmfzVtoBaN1fZQoaAZoCWgPQwj600Z1Ong6wJSGlFKUaBVLtGgWR0BppPMdLg4wdX2UKGgGaAloD0MIAOSECaOoVcCUhpRSlGgVS91oFkdAaaVMkhRqGnV9lChoBmgJaA9DCA2qDU5EkFjAlIaUUpRoFU0JAWgWR0BpqGLLpzLfdX2UKGgGaAloD0MI3sfRHFkJKkCUhpRSlGgVS39oFkdAaa0nTAnDznV9lChoBmgJaA9DCN7/xwkTfj7AlIaUUpRoFUuRaBZHQGmxMPJ7sv91fZQoaAZoCWgPQwjCaFa2D7kzwJSGlFKUaBVLsmgWR0Bpsz9ZRsMzdX2UKGgGaAloD0MIi/1l9+QRR8CUhpRSlGgVS3BoFkdAabec6vJRwnV9lChoBmgJaA9DCHiazHhbQT/AlIaUUpRoFUtwaBZHQGm9Gkep4r11fZQoaAZoCWgPQwgRjINLx11mwJSGlFKUaBVL+2gWR0BpwBtpEhJRdX2UKGgGaAloD0MIqg8k7xzSMMCUhpRSlGgVTegDaBZHQGnKhcZ9/jN1fZQoaAZoCWgPQwikq3R3nb0hQJSGlFKUaBVLbWgWR0Bp1P7UG3WndX2UKGgGaAloD0MI4DDRIAVpQ8CUhpRSlGgVS7ZoFkdAadbxo7FKkHV9lChoBmgJaA9DCMHgmjv6SUnAlIaUUpRoFUuhaBZHQGnaztkWhyt1fZQoaAZoCWgPQwhL5ljeVa1DwJSGlFKUaBVLsGgWR0Bp4xiiItUXdX2UKGgGaAloD0MIfnGpSluWRMCUhpRSlGgVS9NoFkdAaea3sHB1tHV9lChoBmgJaA9DCLpqniPyPTPAlIaUUpRoFUuzaBZHQGnorofSx7l1fZQoaAZoCWgPQwghXAGFemZAwJSGlFKUaBVLpWgWR0Bp6a/RE4NrdX2UKGgGaAloD0MI3e9QFOgRTMCUhpRSlGgVS+JoFkdAafCyHEdeY3V9lChoBmgJaA9DCNemsb0W1DLAlIaUUpRoFUuiaBZHQGn1Ok+HJtB1fZQoaAZoCWgPQwiKdap8zwj4P5SGlFKUaBVN6ANoFkdAagIV3Ux20XV9lChoBmgJaA9DCMkCJnDr1i1AlIaUUpRoFUvlaBZHQGoC/FirksB1fZQoaAZoCWgPQwgrMc9KWmEeQJSGlFKUaBVLz2gWR0BqDOHnEETydX2UKGgGaAloD0MI/OJSlbZ4EUCUhpRSlGgVS/toFkdAag4OhkAggXV9lChoBmgJaA9DCNZz0vvGGVDAlIaUUpRoFUutaBZHQGoOUNrj5sV1fZQoaAZoCWgPQwjAsz16w6NEwJSGlFKUaBVLgGgWR0BqDtEVnEl3dX2UKGgGaAloD0MIj+BGyhbxIcCUhpRSlGgVS6loFkdAahBc580DU3V9lChoBmgJaA9DCEQX1LfM+T3AlIaUUpRoFUu7aBZHQGoQXtKIznB1fZQoaAZoCWgPQwhaRuo9ledOwJSGlFKUaBVLlGgWR0BqFjENvwVkdX2UKGgGaAloD0MITvIjfsUyQECUhpRSlGgVS6poFkdAaiIX3xnWa3V9lChoBmgJaA9DCLUzTG2p6yrAlIaUUpRoFUvSaBZHQGomnjZL7Gh1fZQoaAZoCWgPQwhUck7soaJVwJSGlFKUaBVL42gWR0BqJvNiYsundX2UKGgGaAloD0MImZ1F71TDUsCUhpRSlGgVS61oFkdAaidQnhKlHnV9lChoBmgJaA9DCHx+GCE82tY/lIaUUpRoFUtnaBZHQGoqLjYI0Il1fZQoaAZoCWgPQwjVr3Q+PH89wJSGlFKUaBVLmWgWR0BqLBT850bMdX2UKGgGaAloD0MISaEsfH2rRsCUhpRSlGgVS7JoFkdAajOmjTKDCnV9lChoBmgJaA9DCAuYwK27WlVAlIaUUpRoFU3oA2gWR0BqNpKtga3rdX2UKGgGaAloD0MIpREz+zz2KMCUhpRSlGgVS7FoFkdAajxB9kSVW3V9lChoBmgJaA9DCC7HKxA9iTnAlIaUUpRoFUuxaBZHQGo9OdXko4N1fZQoaAZoCWgPQwhDklm9wztHwJSGlFKUaBVLrmgWR0BqPSq2jO9ndX2UKGgGaAloD0MIvAfovpzRIkCUhpRSlGgVS5VoFkdAaj470WdmQXV9lChoBmgJaA9DCMdnsn+e3kHAlIaUUpRoFUt7aBZHQGpCPJ7sv7F1fZQoaAZoCWgPQwisjbETXpBEwJSGlFKUaBVLwWgWR0BqQsqUeMhpdX2UKGgGaAloD0MIY+/FF+1jUsCUhpRSlGgVS2BoFkdAalNaTwDvE3V9lChoBmgJaA9DCGPxm8JKHUHAlIaUUpRoFUu0aBZHQGpUc5bQkX11fZQoaAZoCWgPQwiowwq3fOwhwJSGlFKUaBVLuGgWR0BqVTZSNwR5dX2UKGgGaAloD0MI1H/W/PjL4j+UhpRSlGgVS3FoFkdAalnf0Eovz3V9lChoBmgJaA9DCAzohTsXMjPAlIaUUpRoFUt3aBZHQGpaY3Ns3yZ1fZQoaAZoCWgPQwgiMxe4PPBIwJSGlFKUaBVLnmgWR0BqWp7TlT3qdX2UKGgGaAloD0MIHEEqxY4OTsCUhpRSlGgVS9BoFkdAalsoMKCxvHV9lChoBmgJaA9DCLcos0EmYS9AlIaUUpRoFUvKaBZHQGpc4HHFPzp1fZQoaAZoCWgPQwinID8buUBQwJSGlFKUaBVLqmgWR0BqYAa1kUbldX2UKGgGaAloD0MIN4qsNZQyRsCUhpRSlGgVS5JoFkdAamD7zkIX03V9lChoBmgJaA9DCNxlv+50qUvAlIaUUpRoFUu6aBZHQGpxHAymALB1fZQoaAZoCWgPQwgUzm4tk/xUQJSGlFKUaBVN6ANoFkdAanIZtvXK83V9lChoBmgJaA9DCFn4+lqXShHAlIaUUpRoFUt6aBZHQGpysjFAE+x1fZQoaAZoCWgPQwj9LQH4pxQMQJSGlFKUaBVLb2gWR0BqdoWYWtU5dX2UKGgGaAloD0MIUKbR5OKRasCUhpRSlGgVTZEBaBZHQGp3BHbypaR1fZQoaAZoCWgPQwi8BKc+kNZNwJSGlFKUaBVN6ANoFkdAanx62v0ROHV9lChoBmgJaA9DCM2TawpkNhJAlIaUUpRoFUukaBZHQGp9pWFN+LF1fZQoaAZoCWgPQwgj2SPUDEkjwJSGlFKUaBVLiGgWR0BqfgQg9vCNdX2UKGgGaAloD0MIPbt868N6IsCUhpRSlGgVS7BoFkdAaoRuP3i71HV9lChoBmgJaA9DCCEhyhe0IDfAlIaUUpRoFUvQaBZHQGqFyx7iQ1d1fZQoaAZoCWgPQwi8z/HR4spGwJSGlFKUaBVLX2gWR0BqhxuIhyKfdX2UKGgGaAloD0MI0lEOZhNg6r+UhpRSlGgVS8ZoFkdAaojEjPfKp3V9lChoBmgJaA9DCNuIJ7uZgRjAlIaUUpRoFUu/aBZHQGqMtTUAks11fZQoaAZoCWgPQwh9CKpGrxpJwJSGlFKUaBVLbGgWR0BqjR4bCJoCdX2UKGgGaAloD0MIkC42rRR+Q8CUhpRSlGgVS2JoFkdAapG44Ia99XV9lChoBmgJaA9DCOl/uRYt8EXAlIaUUpRoFUvfaBZHQGqSj9wWFex1fZQoaAZoCWgPQwiNmq+Sj+0TQJSGlFKUaBVLmGgWR0BqlrblA/s3dX2UKGgGaAloD0MIuTR+4ZW0MUCUhpRSlGgVTQ4BaBZHQGqXRgAp8Wt1fZQoaAZoCWgPQwgNw0fElFJHwJSGlFKUaBVLyGgWR0Bqm4aWHDaXdX2UKGgGaAloD0MIpb3BFyZrUMCUhpRSlGgVS9doFkdAap+P1+RYBHV9lChoBmgJaA9DCEPFOH8TtEjAlIaUUpRoFUt9aBZHQGqnuJ1q33J1fZQoaAZoCWgPQwhTliGOdflNwJSGlFKUaBVLzGgWR0BqqXFDOTq0dX2UKGgGaAloD0MIj8TL07lCOsCUhpRSlGgVS6VoFkdAaqqwbEP1+XV9lChoBmgJaA9DCFZHjnQGVi7AlIaUUpRoFUu+aBZHQGqvcxj8UEh1fZQoaAZoCWgPQwhR3Vz8bQ/2P5SGlFKUaBVLo2gWR0BqsU8YAKfGdX2UKGgGaAloD0MIL75ojxfWOUCUhpRSlGgVS4FoFkdAarTYSQHRkXV9lChoBmgJaA9DCIXukjgrojjAlIaUUpRoFUveaBZHQGq1vWYnfEZ1fZQoaAZoCWgPQwiKkSVzLCNEQJSGlFKUaBVL1GgWR0Bqt/pSrHU+dX2UKGgGaAloD0MIJ/VlaacqMMCUhpRSlGgVS2FoFkdAasPGrCFbmnV9lChoBmgJaA9DCN+kaVA0XxFAlIaUUpRoFUvFaBZHQGrEjQzDXOJ1fZQoaAZoCWgPQwgu5ueGpnwywJSGlFKUaBVLp2gWR0BqyBJAdGRWdX2UKGgGaAloD0MInuqQm+GGEkCUhpRSlGgVS75oFkdAasgF49ovjHV9lChoBmgJaA9DCMO5hhka+VXAlIaUUpRoFUueaBZHQGrKcGcFyJd1fZQoaAZoCWgPQwjOcW4T7pU8wJSGlFKUaBVLamgWR0BqzkG7jDKpdX2UKGgGaAloD0MIkLxzKEN9NMCUhpRSlGgVS2xoFkdAatCyeI2wV3V9lChoBmgJaA9DCMcTQZyHf1HAlIaUUpRoFUvHaBZHQGrgh0IToMd1fZQoaAZoCWgPQwhO7+L9uLdEwJSGlFKUaBVLl2gWR0Bq5AiFCb+cdX2UKGgGaAloD0MIETXR5yM0Z8CUhpRSlGgVTasCaBZHQGrsgv114gR1fZQoaAZoCWgPQwjejQWFQTkywJSGlFKUaBVLvWgWR0Bq7NuP3i71dX2UKGgGaAloD0MIRKLQsu7XLsCUhpRSlGgVS5hoFkdAau1tTDO1OXV9lChoBmgJaA9DCNEGYAMipChAlIaUUpRoFUv5aBZHQGrwvVmSQo11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa54a8fe440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa54a8fe4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa54a8fe560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa54a8fe5f0>", "_build": "<function ActorCriticPolicy._build at 0x7fa54a8fe680>", "forward": "<function ActorCriticPolicy.forward at 0x7fa54a8fe710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa54a8fe7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa54a8fe830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa54a8fe8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa54a8fe950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa54a8fe9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa54a93bd50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "num_timesteps": 1032192, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651686647.2561293, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAFpigD2uFYy6VqJKuWLENrQ4Mh65kzNrOAAAgD8AAIA/M26aPI8SQjmWlhU+RAcPvhmZfzzZIyW/AAAAAAAAgD8z4lC95P2JP1yzsr2PIxy/vEIxvbygoD0AAAAAAAAAADPtaz1pLmU/bqT3PNACNb8w1c49fHs3vAAAAAAAAAAA8w9GvuiqqT0gxXU+oO8ZvshVqTzyf7S8AAAAAAAAAAANByW+27yMvGEISruxkmC53j/xPbLtejoAAIA/AACAPziZkb6jTlI/jGusvXU32b7OVDq+0vFVPQAAAAAAAAAA+kILPh/CjT7hxsK9v2KFvtF7qDyjyAe8AAAAAAAAAACGuJA+exCHP3g5VT6qUxK/+FeWPl5x1rwAAAAAAAAAAMAohj3XIaE/VenaPjwKGr9XR3Y9qtlUPgAAAAAAAAAAxngivracH7yrrNa70g0mui2OmD2+RQk7AACAPwAAgD/gmTW+WxiIPVoJyz26YjC+7vOsvaQCg70AAAAAAAAAAICEy72NLZU+6r8ZPcG7375oQti8+82PPQAAAAAAAAAAxvxFvruf57yzBGi5jlSet9C6Tj7NDJk4AACAPwAAgD8GqEW+TpGAPTIlgj4q9XO+Vq/nPOLLDz0AAAAAAAAAAFO5Gb5EqPA+3cSavaRUH79/1O69IDpPvQAAAAAAAAAAoEJtvo+mIboL8lA6Vdq9NAUItLsjr3O5AACAPwAAgD9z4L29PDmPPrrLWLzGzte+9u0ZvWs3AD0AAAAAAAAAAM2DaD0WTQs9vUKVvuUCNL7RFeW9kiBKvQAAAAAAAAAAIOmFvvNDwj7NNt89Vw6Tvq9Zsb346Li6AAAAAAAAAADGTRy+D8MGvJrl4rov2wM5lAuLPeL0ADoAAIA/AACAP81ss72PtkS6UGiDO+ZiizjJmkw3gDyvuQAAAAAAAIA/AGf2vVK2pjqxNJk88/4Fu/RXfLwwTO07AACAPwAAgD9mqH+88XiaP6Lqdr2/nS+/tdPAuyorujwAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.032192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISbpm8o3JcUCUhpRSlIwBbJRL5owBdJRHQJTvG6xxDLN1fZQoaAZoCWgPQwgLQQ5KGAxkQJSGlFKUaBVN6ANoFkdAlO9NVinYQXV9lChoBmgJaA9DCKt7ZHPVaW5AlIaUUpRoFUvOaBZHQJTvh2icoYx1fZQoaAZoCWgPQwib4nFRrXJxQJSGlFKUaBVLrmgWR0CU74e/Yao/dX2UKGgGaAloD0MISpnU0IZ6bkCUhpRSlGgVS8NoFkdAlPESQT238XV9lChoBmgJaA9DCPSJPEk6PnFAlIaUUpRoFUvlaBZHQJTxSyu6mO51fZQoaAZoCWgPQwhO0vwxrfVxQJSGlFKUaBVL+GgWR0CU8WxQBPsSdX2UKGgGaAloD0MIvCNjtbkhcECUhpRSlGgVS8RoFkdAlPF9xlxwQ3V9lChoBmgJaA9DCE6AYflz4m9AlIaUUpRoFUvGaBZHQJTx/sjVx0d1fZQoaAZoCWgPQwhRMGMK1ntwQJSGlFKUaBVLtmgWR0CU8jtelbeNdX2UKGgGaAloD0MIHhfVImJZcUCUhpRSlGgVS+FoFkdAlPKCGBWge3V9lChoBmgJaA9DCOWZl8NuJXFAlIaUUpRoFUvcaBZHQJTyiwhW5pd1fZQoaAZoCWgPQwgTY5l+CVZxQJSGlFKUaBVL02gWR0CU8t3pwCKadX2UKGgGaAloD0MIec2rOqstcUCUhpRSlGgVS/ZoFkdAlPL2wzLwF3V9lChoBmgJaA9DCGwldJcEhnNAlIaUUpRoFUvjaBZHQJTz51+y7f51fZQoaAZoCWgPQwhXe9gLBb5wQJSGlFKUaBVL+GgWR0CU9U0NSZSfdX2UKGgGaAloD0MIdZSD2QRRbkCUhpRSlGgVS8xoFkdAlPWYZEUj9nV9lChoBmgJaA9DCMOcoE1OqXJAlIaUUpRoFU0MAmgWR0CU9c6VMVUNdX2UKGgGaAloD0MIIOup1deyckCUhpRSlGgVS8RoFkdAlPXocNpdr3V9lChoBmgJaA9DCGA8g4Y+P3FAlIaUUpRoFUvGaBZHQJT2L7EYO2B1fZQoaAZoCWgPQwjQKcjPBkxyQJSGlFKUaBVL+mgWR0CU9oyaNMoMdX2UKGgGaAloD0MIobskzgprckCUhpRSlGgVTVgBaBZHQJT3ktjCpFV1fZQoaAZoCWgPQwipF3yak7RwQJSGlFKUaBVLqWgWR0CU+Ar9l2/0dX2UKGgGaAloD0MI/RTHgddTcECUhpRSlGgVS8loFkdAlPg8Jlar3nV9lChoBmgJaA9DCK5nCMcshHBAlIaUUpRoFUvLaBZHQJT4syad+Xt1fZQoaAZoCWgPQwh5r1qZsFpxQJSGlFKUaBVNCAFoFkdAlPjlQqI8AHV9lChoBmgJaA9DCOygEtcxCXFAlIaUUpRoFU3BAWgWR0CU+SbZvkzXdX2UKGgGaAloD0MI06OpnsyTc0CUhpRSlGgVS9xoFkdAlPkzER8MNXV9lChoBmgJaA9DCATidf2CpnFAlIaUUpRoFUvRaBZHQJT5ycOLBKt1fZQoaAZoCWgPQwgfhlYn5+ZuQJSGlFKUaBVL5mgWR0CU+usqJ/G3dX2UKGgGaAloD0MImkNSC6X+bUCUhpRSlGgVS+ZoFkdAlPtCqhlDnnV9lChoBmgJaA9DCKBQTx/BAXJAlIaUUpRoFU1OAWgWR0CU+3w9q1w6dX2UKGgGaAloD0MI/b0UHvQ5ckCUhpRSlGgVTSsBaBZHQJT89QBPsRh1fZQoaAZoCWgPQwgfoWZIlcVyQJSGlFKUaBVNBwFoFkdAlP07mMfignV9lChoBmgJaA9DCIXrUbjeLnBAlIaUUpRoFUvAaBZHQJT9inMt9QZ1fZQoaAZoCWgPQwjso1NXfvFxQJSGlFKUaBVL32gWR0CU/jnIQvpRdX2UKGgGaAloD0MIPiMRGkFqckCUhpRSlGgVS+FoFkdAlP6XpnpSrHV9lChoBmgJaA9DCAXEJFyIGXJAlIaUUpRoFU1CAWgWR0CU/wRB/qgRdX2UKGgGaAloD0MIw35PrBNUcECUhpRSlGgVS8JoFkdAlP+Dkp7TlXV9lChoBmgJaA9DCCcwndbtrnJAlIaUUpRoFUu/aBZHQJT/5HVf/m11fZQoaAZoCWgPQwg6evzepgtxQJSGlFKUaBVLq2gWR0CVAEdjXnQqdX2UKGgGaAloD0MI75BigISickCUhpRSlGgVS/VoFkdAlQBmM0gr6XV9lChoBmgJaA9DCCo5J/ZQ625AlIaUUpRoFU0JAWgWR0CVAHnHNorXdX2UKGgGaAloD0MIipP7HYqXb0CUhpRSlGgVTQYBaBZHQJUAqKIi1Rd1fZQoaAZoCWgPQwgBMQkX8ntyQJSGlFKUaBVNdwFoFkdAlQKV5B1LanV9lChoBmgJaA9DCHy1ozgHNnJAlIaUUpRoFUvyaBZHQJUC9v99+gF1fZQoaAZoCWgPQwhV2uIa33dwQJSGlFKUaBVNAgFoFkdAlQNdVaOghHV9lChoBmgJaA9DCKoM424QiW5AlIaUUpRoFUu3aBZHQJUEXeqJdjZ1fZQoaAZoCWgPQwh324XmOuZvQJSGlFKUaBVL2mgWR0CVBJezlcQidX2UKGgGaAloD0MId6IkJBJrckCUhpRSlGgVTRwBaBZHQJUFeIk7fYV1fZQoaAZoCWgPQwhPV3csNjpzQJSGlFKUaBVL5GgWR0CVBffTCtRvdX2UKGgGaAloD0MIlddK6C6xcECUhpRSlGgVTQwBaBZHQJUGDaN+9al1fZQoaAZoCWgPQwhn8WJhiLNuQJSGlFKUaBVL12gWR0CVBsyeqaPTdX2UKGgGaAloD0MIlIeFWpMzcUCUhpRSlGgVTSIBaBZHQJUHYPxx1gZ1fZQoaAZoCWgPQwhwsDcxpGtxQJSGlFKUaBVLs2gWR0CVB4y925hCdX2UKGgGaAloD0MIDYrmAewTckCUhpRSlGgVTX8BaBZHQJUH4XEZR9B1fZQoaAZoCWgPQwgcsoF08TFyQJSGlFKUaBVLyWgWR0CVCA4LkS26dX2UKGgGaAloD0MIp0HRPEBmcECUhpRSlGgVTREBaBZHQJUIhpFkQPJ1fZQoaAZoCWgPQwhv2LYo8wZzQJSGlFKUaBVL4GgWR0CVCJh24d6tdX2UKGgGaAloD0MIwF32646icECUhpRSlGgVS9BoFkdAlQj3dweeWnV9lChoBmgJaA9DCEBqEyf3XW9AlIaUUpRoFUvOaBZHQJUJFgeA/cF1fZQoaAZoCWgPQwg2A1yQLX1vQJSGlFKUaBVL52gWR0CVCcv7FbV0dX2UKGgGaAloD0MI071O6gu8cUCUhpRSlGgVTS4BaBZHQJUKzeFcpsp1fZQoaAZoCWgPQwjlC1pIQIZjQJSGlFKUaBVN6ANoFkdAlQrTOLR8dHV9lChoBmgJaA9DCI2ACkcQ12NAlIaUUpRoFU3oA2gWR0CVCzHz6JqJdX2UKGgGaAloD0MIpDSbx+EPckCUhpRSlGgVS6hoFkdAlQt/I0ZWJnV9lChoBmgJaA9DCC16pwKugHJAlIaUUpRoFUvnaBZHQJUMDPJJXhh1fZQoaAZoCWgPQwhU4c/wJmFwQJSGlFKUaBVL1mgWR0CVDBXmNipedX2UKGgGaAloD0MIy59vC1aMcUCUhpRSlGgVTVoBaBZHQJUMzvLHMll1fZQoaAZoCWgPQwjTvySVqTBuQJSGlFKUaBVL3WgWR0CVDUDAJswddX2UKGgGaAloD0MIHt5zYLnicECUhpRSlGgVTQQBaBZHQJUNblQuVX51fZQoaAZoCWgPQwgnhuRk4plwQJSGlFKUaBVL0WgWR0CVDb8wpON6dX2UKGgGaAloD0MIoWZIFUWkb0CUhpRSlGgVS85oFkdAlQ4Qkona4HV9lChoBmgJaA9DCKSl8nYEl3BAlIaUUpRoFUu7aBZHQJUOG4OMERt1fZQoaAZoCWgPQwjpEDgSKJZxQJSGlFKUaBVLumgWR0CVDvWfbsWwdX2UKGgGaAloD0MIbhXEQBdBc0CUhpRSlGgVS9BoFkdAlQ9dcW0qpnV9lChoBmgJaA9DCAt+G2K8hnNAlIaUUpRoFUvVaBZHQJUPsiPhhph1fZQoaAZoCWgPQwhrC89LxdFvQJSGlFKUaBVLuGgWR0CVD9974SHudX2UKGgGaAloD0MIfgIoRpabcUCUhpRSlGgVS+VoFkdAlRC6SHM2WXV9lChoBmgJaA9DCMmtSbflFXBAlIaUUpRoFUvZaBZHQJUQxHXmNip1fZQoaAZoCWgPQwhkH2RZ8DZwQJSGlFKUaBVL8WgWR0CVEZh8pkPMdX2UKGgGaAloD0MIisqGNRUFcECUhpRSlGgVS+ZoFkdAlRG0Dp1RtXV9lChoBmgJaA9DCA0a+ie49HJAlIaUUpRoFUvJaBZHQJUSM7T2FnJ1fZQoaAZoCWgPQwixUGuaN0hwQJSGlFKUaBVL8mgWR0CVE+zMA3kxdX2UKGgGaAloD0MILhud85N9cUCUhpRSlGgVS99oFkdAlRSH1SOzY3V9lChoBmgJaA9DCKEsfH0tnXFAlIaUUpRoFUv0aBZHQJUUyHSF49p1fZQoaAZoCWgPQwh+4gD6PblwQJSGlFKUaBVL/mgWR0CVFNdTYNAkdX2UKGgGaAloD0MIiVxwBv+NY0CUhpRSlGgVTegDaBZHQJUVST/yXld1fZQoaAZoCWgPQwhN+KV+Xq5xQJSGlFKUaBVL4GgWR0CVFhzuWrwOdX2UKGgGaAloD0MI7WKa6d4/cUCUhpRSlGgVS/VoFkdAlRdxdMTN+3V9lChoBmgJaA9DCM0jfzBwg25AlIaUUpRoFUvVaBZHQJUXiV5a/yp1fZQoaAZoCWgPQwgS9YJPs+hyQJSGlFKUaBVNGwFoFkdAlRf46GQCCHV9lChoBmgJaA9DCIGzlCyn+G5AlIaUUpRoFUu2aBZHQJUYSbutwJh1fZQoaAZoCWgPQwjCwd7EENNwQJSGlFKUaBVL1GgWR0CVGJIK+i8GdX2UKGgGaAloD0MIza/mAEH7ckCUhpRSlGgVTYUBaBZHQJUZOx0MgEF1fZQoaAZoCWgPQwhEw2LUNVhvQJSGlFKUaBVL9GgWR0CVGWl8w5/9dX2UKGgGaAloD0MI6sw9JPwFb0CUhpRSlGgVS+5oFkdAlRmLFGXoknV9lChoBmgJaA9DCEjfpGnQ/HBAlIaUUpRoFUvQaBZHQJUaYM+eOGV1fZQoaAZoCWgPQwj4iQPod8ZyQJSGlFKUaBVL2mgWR0CVGujjaPCEdX2UKGgGaAloD0MIukp315nBckCUhpRSlGgVTQMBaBZHQJUbjst03fh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 210, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93f35774e6dfdc1a1a4048880b2d8bced724595b65b7be1abb9df6e5b22c9266
3
+ size 144353
ppo-LunarLander-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v3/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa54a8fe440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa54a8fe4d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa54a8fe560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa54a8fe5f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa54a8fe680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa54a8fe710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa54a8fe7a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa54a8fe830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa54a8fe8c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa54a8fe950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa54a8fe9e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa54a93bd50>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 24,
45
+ "num_timesteps": 1032192,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651686647.2561293,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAFpigD2uFYy6VqJKuWLENrQ4Mh65kzNrOAAAgD8AAIA/M26aPI8SQjmWlhU+RAcPvhmZfzzZIyW/AAAAAAAAgD8z4lC95P2JP1yzsr2PIxy/vEIxvbygoD0AAAAAAAAAADPtaz1pLmU/bqT3PNACNb8w1c49fHs3vAAAAAAAAAAA8w9GvuiqqT0gxXU+oO8ZvshVqTzyf7S8AAAAAAAAAAANByW+27yMvGEISruxkmC53j/xPbLtejoAAIA/AACAPziZkb6jTlI/jGusvXU32b7OVDq+0vFVPQAAAAAAAAAA+kILPh/CjT7hxsK9v2KFvtF7qDyjyAe8AAAAAAAAAACGuJA+exCHP3g5VT6qUxK/+FeWPl5x1rwAAAAAAAAAAMAohj3XIaE/VenaPjwKGr9XR3Y9qtlUPgAAAAAAAAAAxngivracH7yrrNa70g0mui2OmD2+RQk7AACAPwAAgD/gmTW+WxiIPVoJyz26YjC+7vOsvaQCg70AAAAAAAAAAICEy72NLZU+6r8ZPcG7375oQti8+82PPQAAAAAAAAAAxvxFvruf57yzBGi5jlSet9C6Tj7NDJk4AACAPwAAgD8GqEW+TpGAPTIlgj4q9XO+Vq/nPOLLDz0AAAAAAAAAAFO5Gb5EqPA+3cSavaRUH79/1O69IDpPvQAAAAAAAAAAoEJtvo+mIboL8lA6Vdq9NAUItLsjr3O5AACAPwAAgD9z4L29PDmPPrrLWLzGzte+9u0ZvWs3AD0AAAAAAAAAAM2DaD0WTQs9vUKVvuUCNL7RFeW9kiBKvQAAAAAAAAAAIOmFvvNDwj7NNt89Vw6Tvq9Zsb346Li6AAAAAAAAAADGTRy+D8MGvJrl4rov2wM5lAuLPeL0ADoAAIA/AACAP81ss72PtkS6UGiDO+ZiizjJmkw3gDyvuQAAAAAAAIA/AGf2vVK2pjqxNJk88/4Fu/RXfLwwTO07AACAPwAAgD9mqH+88XiaP6Lqdr2/nS+/tdPAuyorujwAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.032192,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISbpm8o3JcUCUhpRSlIwBbJRL5owBdJRHQJTvG6xxDLN1fZQoaAZoCWgPQwgLQQ5KGAxkQJSGlFKUaBVN6ANoFkdAlO9NVinYQXV9lChoBmgJaA9DCKt7ZHPVaW5AlIaUUpRoFUvOaBZHQJTvh2icoYx1fZQoaAZoCWgPQwib4nFRrXJxQJSGlFKUaBVLrmgWR0CU74e/Yao/dX2UKGgGaAloD0MISpnU0IZ6bkCUhpRSlGgVS8NoFkdAlPESQT238XV9lChoBmgJaA9DCPSJPEk6PnFAlIaUUpRoFUvlaBZHQJTxSyu6mO51fZQoaAZoCWgPQwhO0vwxrfVxQJSGlFKUaBVL+GgWR0CU8WxQBPsSdX2UKGgGaAloD0MIvCNjtbkhcECUhpRSlGgVS8RoFkdAlPF9xlxwQ3V9lChoBmgJaA9DCE6AYflz4m9AlIaUUpRoFUvGaBZHQJTx/sjVx0d1fZQoaAZoCWgPQwhRMGMK1ntwQJSGlFKUaBVLtmgWR0CU8jtelbeNdX2UKGgGaAloD0MIHhfVImJZcUCUhpRSlGgVS+FoFkdAlPKCGBWge3V9lChoBmgJaA9DCOWZl8NuJXFAlIaUUpRoFUvcaBZHQJTyiwhW5pd1fZQoaAZoCWgPQwgTY5l+CVZxQJSGlFKUaBVL02gWR0CU8t3pwCKadX2UKGgGaAloD0MIec2rOqstcUCUhpRSlGgVS/ZoFkdAlPL2wzLwF3V9lChoBmgJaA9DCGwldJcEhnNAlIaUUpRoFUvjaBZHQJTz51+y7f51fZQoaAZoCWgPQwhXe9gLBb5wQJSGlFKUaBVL+GgWR0CU9U0NSZSfdX2UKGgGaAloD0MIdZSD2QRRbkCUhpRSlGgVS8xoFkdAlPWYZEUj9nV9lChoBmgJaA9DCMOcoE1OqXJAlIaUUpRoFU0MAmgWR0CU9c6VMVUNdX2UKGgGaAloD0MIIOup1deyckCUhpRSlGgVS8RoFkdAlPXocNpdr3V9lChoBmgJaA9DCGA8g4Y+P3FAlIaUUpRoFUvGaBZHQJT2L7EYO2B1fZQoaAZoCWgPQwjQKcjPBkxyQJSGlFKUaBVL+mgWR0CU9oyaNMoMdX2UKGgGaAloD0MIobskzgprckCUhpRSlGgVTVgBaBZHQJT3ktjCpFV1fZQoaAZoCWgPQwipF3yak7RwQJSGlFKUaBVLqWgWR0CU+Ar9l2/0dX2UKGgGaAloD0MI/RTHgddTcECUhpRSlGgVS8loFkdAlPg8Jlar3nV9lChoBmgJaA9DCK5nCMcshHBAlIaUUpRoFUvLaBZHQJT4syad+Xt1fZQoaAZoCWgPQwh5r1qZsFpxQJSGlFKUaBVNCAFoFkdAlPjlQqI8AHV9lChoBmgJaA9DCOygEtcxCXFAlIaUUpRoFU3BAWgWR0CU+SbZvkzXdX2UKGgGaAloD0MI06OpnsyTc0CUhpRSlGgVS9xoFkdAlPkzER8MNXV9lChoBmgJaA9DCATidf2CpnFAlIaUUpRoFUvRaBZHQJT5ycOLBKt1fZQoaAZoCWgPQwgfhlYn5+ZuQJSGlFKUaBVL5mgWR0CU+usqJ/G3dX2UKGgGaAloD0MImkNSC6X+bUCUhpRSlGgVS+ZoFkdAlPtCqhlDnnV9lChoBmgJaA9DCKBQTx/BAXJAlIaUUpRoFU1OAWgWR0CU+3w9q1w6dX2UKGgGaAloD0MI/b0UHvQ5ckCUhpRSlGgVTSsBaBZHQJT89QBPsRh1fZQoaAZoCWgPQwgfoWZIlcVyQJSGlFKUaBVNBwFoFkdAlP07mMfignV9lChoBmgJaA9DCIXrUbjeLnBAlIaUUpRoFUvAaBZHQJT9inMt9QZ1fZQoaAZoCWgPQwjso1NXfvFxQJSGlFKUaBVL32gWR0CU/jnIQvpRdX2UKGgGaAloD0MIPiMRGkFqckCUhpRSlGgVS+FoFkdAlP6XpnpSrHV9lChoBmgJaA9DCAXEJFyIGXJAlIaUUpRoFU1CAWgWR0CU/wRB/qgRdX2UKGgGaAloD0MIw35PrBNUcECUhpRSlGgVS8JoFkdAlP+Dkp7TlXV9lChoBmgJaA9DCCcwndbtrnJAlIaUUpRoFUu/aBZHQJT/5HVf/m11fZQoaAZoCWgPQwg6evzepgtxQJSGlFKUaBVLq2gWR0CVAEdjXnQqdX2UKGgGaAloD0MI75BigISickCUhpRSlGgVS/VoFkdAlQBmM0gr6XV9lChoBmgJaA9DCCo5J/ZQ625AlIaUUpRoFU0JAWgWR0CVAHnHNorXdX2UKGgGaAloD0MIipP7HYqXb0CUhpRSlGgVTQYBaBZHQJUAqKIi1Rd1fZQoaAZoCWgPQwgBMQkX8ntyQJSGlFKUaBVNdwFoFkdAlQKV5B1LanV9lChoBmgJaA9DCHy1ozgHNnJAlIaUUpRoFUvyaBZHQJUC9v99+gF1fZQoaAZoCWgPQwhV2uIa33dwQJSGlFKUaBVNAgFoFkdAlQNdVaOghHV9lChoBmgJaA9DCKoM424QiW5AlIaUUpRoFUu3aBZHQJUEXeqJdjZ1fZQoaAZoCWgPQwh324XmOuZvQJSGlFKUaBVL2mgWR0CVBJezlcQidX2UKGgGaAloD0MId6IkJBJrckCUhpRSlGgVTRwBaBZHQJUFeIk7fYV1fZQoaAZoCWgPQwhPV3csNjpzQJSGlFKUaBVL5GgWR0CVBffTCtRvdX2UKGgGaAloD0MIlddK6C6xcECUhpRSlGgVTQwBaBZHQJUGDaN+9al1fZQoaAZoCWgPQwhn8WJhiLNuQJSGlFKUaBVL12gWR0CVBsyeqaPTdX2UKGgGaAloD0MIlIeFWpMzcUCUhpRSlGgVTSIBaBZHQJUHYPxx1gZ1fZQoaAZoCWgPQwhwsDcxpGtxQJSGlFKUaBVLs2gWR0CVB4y925hCdX2UKGgGaAloD0MIDYrmAewTckCUhpRSlGgVTX8BaBZHQJUH4XEZR9B1fZQoaAZoCWgPQwgcsoF08TFyQJSGlFKUaBVLyWgWR0CVCA4LkS26dX2UKGgGaAloD0MIp0HRPEBmcECUhpRSlGgVTREBaBZHQJUIhpFkQPJ1fZQoaAZoCWgPQwhv2LYo8wZzQJSGlFKUaBVL4GgWR0CVCJh24d6tdX2UKGgGaAloD0MIwF32646icECUhpRSlGgVS9BoFkdAlQj3dweeWnV9lChoBmgJaA9DCEBqEyf3XW9AlIaUUpRoFUvOaBZHQJUJFgeA/cF1fZQoaAZoCWgPQwg2A1yQLX1vQJSGlFKUaBVL52gWR0CVCcv7FbV0dX2UKGgGaAloD0MI071O6gu8cUCUhpRSlGgVTS4BaBZHQJUKzeFcpsp1fZQoaAZoCWgPQwjlC1pIQIZjQJSGlFKUaBVN6ANoFkdAlQrTOLR8dHV9lChoBmgJaA9DCI2ACkcQ12NAlIaUUpRoFU3oA2gWR0CVCzHz6JqJdX2UKGgGaAloD0MIpDSbx+EPckCUhpRSlGgVS6hoFkdAlQt/I0ZWJnV9lChoBmgJaA9DCC16pwKugHJAlIaUUpRoFUvnaBZHQJUMDPJJXhh1fZQoaAZoCWgPQwhU4c/wJmFwQJSGlFKUaBVL1mgWR0CVDBXmNipedX2UKGgGaAloD0MIy59vC1aMcUCUhpRSlGgVTVoBaBZHQJUMzvLHMll1fZQoaAZoCWgPQwjTvySVqTBuQJSGlFKUaBVL3WgWR0CVDUDAJswddX2UKGgGaAloD0MIHt5zYLnicECUhpRSlGgVTQQBaBZHQJUNblQuVX51fZQoaAZoCWgPQwgnhuRk4plwQJSGlFKUaBVL0WgWR0CVDb8wpON6dX2UKGgGaAloD0MIoWZIFUWkb0CUhpRSlGgVS85oFkdAlQ4Qkona4HV9lChoBmgJaA9DCKSl8nYEl3BAlIaUUpRoFUu7aBZHQJUOG4OMERt1fZQoaAZoCWgPQwjpEDgSKJZxQJSGlFKUaBVLumgWR0CVDvWfbsWwdX2UKGgGaAloD0MIbhXEQBdBc0CUhpRSlGgVS9BoFkdAlQ9dcW0qpnV9lChoBmgJaA9DCAt+G2K8hnNAlIaUUpRoFUvVaBZHQJUPsiPhhph1fZQoaAZoCWgPQwhrC89LxdFvQJSGlFKUaBVLuGgWR0CVD9974SHudX2UKGgGaAloD0MIfgIoRpabcUCUhpRSlGgVS+VoFkdAlRC6SHM2WXV9lChoBmgJaA9DCMmtSbflFXBAlIaUUpRoFUvZaBZHQJUQxHXmNip1fZQoaAZoCWgPQwhkH2RZ8DZwQJSGlFKUaBVL8WgWR0CVEZh8pkPMdX2UKGgGaAloD0MIisqGNRUFcECUhpRSlGgVS+ZoFkdAlRG0Dp1RtXV9lChoBmgJaA9DCA0a+ie49HJAlIaUUpRoFUvJaBZHQJUSM7T2FnJ1fZQoaAZoCWgPQwixUGuaN0hwQJSGlFKUaBVL8mgWR0CVE+zMA3kxdX2UKGgGaAloD0MILhud85N9cUCUhpRSlGgVS99oFkdAlRSH1SOzY3V9lChoBmgJaA9DCKEsfH0tnXFAlIaUUpRoFUv0aBZHQJUUyHSF49p1fZQoaAZoCWgPQwh+4gD6PblwQJSGlFKUaBVL/mgWR0CVFNdTYNAkdX2UKGgGaAloD0MIiVxwBv+NY0CUhpRSlGgVTegDaBZHQJUVST/yXld1fZQoaAZoCWgPQwhN+KV+Xq5xQJSGlFKUaBVL4GgWR0CVFhzuWrwOdX2UKGgGaAloD0MI7WKa6d4/cUCUhpRSlGgVS/VoFkdAlRdxdMTN+3V9lChoBmgJaA9DCM0jfzBwg25AlIaUUpRoFUvVaBZHQJUXiV5a/yp1fZQoaAZoCWgPQwgS9YJPs+hyQJSGlFKUaBVNGwFoFkdAlRf46GQCCHV9lChoBmgJaA9DCIGzlCyn+G5AlIaUUpRoFUu2aBZHQJUYSbutwJh1fZQoaAZoCWgPQwjCwd7EENNwQJSGlFKUaBVL1GgWR0CVGJIK+i8GdX2UKGgGaAloD0MIza/mAEH7ckCUhpRSlGgVTYUBaBZHQJUZOx0MgEF1fZQoaAZoCWgPQwhEw2LUNVhvQJSGlFKUaBVL9GgWR0CVGWl8w5/9dX2UKGgGaAloD0MI6sw9JPwFb0CUhpRSlGgVS+5oFkdAlRmLFGXoknV9lChoBmgJaA9DCEjfpGnQ/HBAlIaUUpRoFUvQaBZHQJUaYM+eOGV1fZQoaAZoCWgPQwj4iQPod8ZyQJSGlFKUaBVL2mgWR0CVGujjaPCEdX2UKGgGaAloD0MIukp315nBckCUhpRSlGgVTQMBaBZHQJUbjst03fh1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 210,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9256d15386e3238ac38332518303e15ced47a1ab458c5c9abf719eb0c5cdee3a
3
+ size 84893
ppo-LunarLander-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e8bfdcc7aa0c522065d85a667f3d0126f149e8c6b6e93a18a55d047630a6d63
3
+ size 43201
ppo-LunarLander-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:398ac5026cb493d7bdd76128b386583f938f48165d015623a05cd0d49c262ef5
3
- size 148393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3fd5921ac4645b16c07c4978d410ddc68c59492960a08121ea5041f7d2a1ff1
3
+ size 215787
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -225.35176102861442, "std_reward": 90.43684101362318, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T17:20:52.869205"}
 
1
+ {"mean_reward": 249.15402866738532, "std_reward": 17.326746639599396, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T18:14:23.722082"}