Harmonify / lib /modules.py
Eempostor's picture
Upload 3 files
bd868ce verified
import os, sys
import traceback
import logging
now_dir = os.getcwd()
sys.path.append(now_dir)
logger = logging.getLogger(__name__)
import numpy as np
import soundfile as sf
import torch
from io import BytesIO
from lib.infer_libs.audio import load_audio
from lib.infer_libs.audio import wav2
from lib.infer_libs.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from lib.pipeline import Pipeline
import time
import glob
from shutil import move
from fairseq import checkpoint_utils
sup_audioext = {
"wav",
"mp3",
"flac",
"ogg",
"opus",
"m4a",
"mp4",
"aac",
"alac",
"wma",
"aiff",
"webm",
"ac3",
}
def note_to_hz(note_name):
try:
SEMITONES = {'C': -9, 'C#': -8, 'D': -7, 'D#': -6, 'E': -5, 'F': -4, 'F#': -3, 'G': -2, 'G#': -1, 'A': 0, 'A#': 1, 'B': 2}
pitch_class, octave = note_name[:-1], int(note_name[-1])
semitone = SEMITONES[pitch_class]
note_number = 12 * (octave - 4) + semitone
frequency = 440.0 * (2.0 ** (1.0/12)) ** note_number
return frequency
except:
return None
def load_hubert(hubert_model_path, config):
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
[hubert_model_path],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
return hubert_model.eval()
class VC:
def __init__(self, config):
self.n_spk = None
self.tgt_sr = None
self.net_g = None
self.pipeline = None
self.cpt = None
self.version = None
self.if_f0 = None
self.version = None
self.hubert_model = None
self.config = config
def get_vc(self, sid, *to_return_protect):
logger.info("Get sid: " + sid)
to_return_protect0 = {
"visible": self.if_f0 != 0,
"value": to_return_protect[0]
if self.if_f0 != 0 and to_return_protect
else 0.5,
"__type__": "update",
}
to_return_protect1 = {
"visible": self.if_f0 != 0,
"value": to_return_protect[1]
if self.if_f0 != 0 and to_return_protect
else 0.33,
"__type__": "update",
}
if sid == "" or sid == []:
if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
logger.info("Clean model cache")
del (
self.net_g,
self.n_spk,
self.vc,
self.hubert_model,
self.tgt_sr,
) # ,cpt
self.hubert_model = (
self.net_g
) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
self.if_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
if self.version == "v1":
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs256NSFsid(
*self.cpt["config"], is_half=self.config.is_half
)
else:
self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
elif self.version == "v2":
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs768NSFsid(
*self.cpt["config"], is_half=self.config.is_half
)
else:
self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
del self.net_g, self.cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
return (
{"visible": False, "__type__": "update"},
{
"visible": True,
"value": to_return_protect0,
"__type__": "update",
},
{
"visible": True,
"value": to_return_protect1,
"__type__": "update",
},
"",
"",
)
#person = f'{os.getenv("weight_root")}/{sid}'
person = f'{sid}'
#logger.info(f"Loading: {person}")
logger.info(f"Loading...")
self.cpt = torch.load(person, map_location="cpu")
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
self.if_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
synthesizer_class = {
("v1", 1): SynthesizerTrnMs256NSFsid,
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
("v2", 1): SynthesizerTrnMs768NSFsid,
("v2", 0): SynthesizerTrnMs768NSFsid_nono,
}
self.net_g = synthesizer_class.get(
(self.version, self.if_f0), SynthesizerTrnMs256NSFsid
)(*self.cpt["config"], is_half=self.config.is_half)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device)
if self.config.is_half:
self.net_g = self.net_g.half()
else:
self.net_g = self.net_g.float()
self.pipeline = Pipeline(self.tgt_sr, self.config)
n_spk = self.cpt["config"][-3]
#index = {"value": get_index_path_from_model(sid), "__type__": "update"}
#logger.info("Select index: " + index["value"])
return (
(
{"visible": False, "maximum": n_spk, "__type__": "update"},
to_return_protect0,
to_return_protect1
)
if to_return_protect
else {"visible": False, "maximum": n_spk, "__type__": "update"}
)
def vc_single_dont_save(
self,
sid,
input_audio_path1,
f0_up_key,
f0_method,
file_index,
file_index2,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
crepe_hop_length,
do_formant,
quefrency,
timbre,
f0_min,
f0_max,
f0_autotune,
hubert_model_path = "assets/hubert/hubert_base.pt"
):
"""
Performs inference without saving
Parameters:
- sid (int)
- input_audio_path1 (str)
- f0_up_key (int)
- f0_method (str)
- file_index (str)
- file_index2 (str)
- index_rate (float)
- filter_radius (int)
- resample_sr (int)
- rms_mix_rate (float)
- protect (float)
- crepe_hop_length (int)
- do_formant (bool)
- quefrency (float)
- timbre (float)
- f0_min (str)
- f0_max (str)
- f0_autotune (bool)
- hubert_model_path (str)
Returns:
Tuple(Tuple(status, index_info, times), Tuple(sr, data)):
- Tuple(status, index_info, times):
- status (str): either "Success." or an error
- index_info (str): index path if used
- times (list): [npy_time, f0_time, infer_time, total_time]
- Tuple(sr, data): Audio data results.
"""
global total_time
total_time = 0
start_time = time.time()
if not input_audio_path1:
return "You need to upload an audio", None
if not os.path.exists(input_audio_path1):
return "Audio was not properly selected or doesn't exist", None
f0_up_key = int(f0_up_key)
if not f0_min.isdigit():
f0_min = note_to_hz(f0_min)
if f0_min:
print(f"Converted Min pitch: freq - {f0_min}")
else:
f0_min = 50
print("Invalid minimum pitch note. Defaulting to 50hz.")
else:
f0_min = float(f0_min)
if not f0_max.isdigit():
f0_max = note_to_hz(f0_max)
if f0_max:
print(f"Converted Max pitch: freq - {f0_max}")
else:
f0_max = 1100
print("Invalid maximum pitch note. Defaulting to 1100hz.")
else:
f0_max = float(f0_max)
try:
print(f"Attempting to load {input_audio_path1}....")
audio = load_audio(file=input_audio_path1,
sr=16000,
DoFormant=do_formant,
Quefrency=quefrency,
Timbre=timbre)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if self.hubert_model is None:
self.hubert_model = load_hubert(hubert_model_path, self.config)
try:
self.if_f0 = self.cpt.get("f0", 1)
except NameError:
message = "Model was not properly selected"
print(message)
return message, None
if file_index and not file_index == "" and isinstance(file_index, str):
file_index = file_index.strip(" ") \
.strip('"') \
.strip("\n") \
.strip('"') \
.strip(" ") \
.replace("trained", "added")
elif file_index2:
file_index = file_index2
else:
file_index = ""
audio_opt = self.pipeline.pipeline(
self.hubert_model,
self.net_g,
sid,
audio,
input_audio_path1,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
self.if_f0,
filter_radius,
self.tgt_sr,
resample_sr,
rms_mix_rate,
self.version,
protect,
crepe_hop_length,
f0_autotune,
f0_min=f0_min,
f0_max=f0_max
)
if self.tgt_sr != resample_sr >= 16000:
tgt_sr = resample_sr
else:
tgt_sr = self.tgt_sr
index_info = (
"Index: %s." % file_index
if isinstance(file_index, str) and os.path.exists(file_index)
else "Index not used."
)
end_time = time.time()
total_time = end_time - start_time
times.append(total_time)
return (
("Success.", index_info, times),
(tgt_sr, audio_opt),
)
except:
info = traceback.format_exc()
logger.warn(info)
return (
(info, None, [None, None, None, None]),
(None, None)
)
def vc_single(
self,
sid,
input_audio_path1,
f0_up_key,
f0_method,
file_index,
file_index2,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
format1,
crepe_hop_length,
do_formant,
quefrency,
timbre,
f0_min,
f0_max,
f0_autotune,
hubert_model_path = "assets/hubert/hubert_base.pt"
):
"""
Performs inference with saving
Parameters:
- sid (int)
- input_audio_path1 (str)
- f0_up_key (int)
- f0_method (str)
- file_index (str)
- file_index2 (str)
- index_rate (float)
- filter_radius (int)
- resample_sr (int)
- rms_mix_rate (float)
- protect (float)
- format1 (str)
- crepe_hop_length (int)
- do_formant (bool)
- quefrency (float)
- timbre (float)
- f0_min (str)
- f0_max (str)
- f0_autotune (bool)
- hubert_model_path (str)
Returns:
Tuple(Tuple(status, index_info, times), Tuple(sr, data), output_path):
- Tuple(status, index_info, times):
- status (str): either "Success." or an error
- index_info (str): index path if used
- times (list): [npy_time, f0_time, infer_time, total_time]
- Tuple(sr, data): Audio data results.
- output_path (str): Audio results path
"""
global total_time
total_time = 0
start_time = time.time()
if not input_audio_path1:
return "You need to upload an audio", None, None
if not os.path.exists(input_audio_path1):
return "Audio was not properly selected or doesn't exist", None, None
f0_up_key = int(f0_up_key)
if not f0_min.isdigit():
f0_min = note_to_hz(f0_min)
if f0_min:
print(f"Converted Min pitch: freq - {f0_min}")
else:
f0_min = 50
print("Invalid minimum pitch note. Defaulting to 50hz.")
else:
f0_min = float(f0_min)
if not f0_max.isdigit():
f0_max = note_to_hz(f0_max)
if f0_max:
print(f"Converted Max pitch: freq - {f0_max}")
else:
f0_max = 1100
print("Invalid maximum pitch note. Defaulting to 1100hz.")
else:
f0_max = float(f0_max)
try:
print(f"Attempting to load {input_audio_path1}...")
audio = load_audio(file=input_audio_path1,
sr=16000,
DoFormant=do_formant,
Quefrency=quefrency,
Timbre=timbre)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if self.hubert_model is None:
self.hubert_model = load_hubert(hubert_model_path, self.config)
try:
self.if_f0 = self.cpt.get("f0", 1)
except NameError:
message = "Model was not properly selected"
print(message)
return message, None
if file_index and not file_index == "" and isinstance(file_index, str):
file_index = file_index.strip(" ") \
.strip('"') \
.strip("\n") \
.strip('"') \
.strip(" ") \
.replace("trained", "added")
elif file_index2:
file_index = file_index2
else:
file_index = ""
audio_opt = self.pipeline.pipeline(
self.hubert_model,
self.net_g,
sid,
audio,
input_audio_path1,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
self.if_f0,
filter_radius,
self.tgt_sr,
resample_sr,
rms_mix_rate,
self.version,
protect,
crepe_hop_length,
f0_autotune,
f0_min=f0_min,
f0_max=f0_max
)
if self.tgt_sr != resample_sr >= 16000:
tgt_sr = resample_sr
else:
tgt_sr = self.tgt_sr
index_info = (
"Index: %s." % file_index
if isinstance(file_index, str) and os.path.exists(file_index)
else "Index not used."
)
opt_root = os.path.join(os.getcwd(), "output")
os.makedirs(opt_root, exist_ok=True)
output_count = 1
while True:
opt_filename = f"{os.path.splitext(os.path.basename(input_audio_path1))[0]}{os.path.basename(os.path.dirname(file_index))}{f0_method.capitalize()}_{output_count}.{format1}"
current_output_path = os.path.join(opt_root, opt_filename)
if not os.path.exists(current_output_path):
break
output_count += 1
try:
if format1 in ["wav", "flac"]:
sf.write(
current_output_path,
audio_opt,
self.tgt_sr,
)
else:
with BytesIO() as wavf:
sf.write(
wavf,
audio_opt,
self.tgt_sr,
format="wav"
)
wavf.seek(0, 0)
with open(current_output_path, "wb") as outf:
wav2(wavf, outf, format1)
except:
info = traceback.format_exc()
end_time = time.time()
total_time = end_time - start_time
times.append(total_time)
return (
("Success.", index_info, times),
(tgt_sr, audio_opt),
current_output_path
)
except:
info = traceback.format_exc()
logger.warn(info)
return (
(info, None, [None, None, None, None]),
(None, None),
None
)