File size: 3,273 Bytes
f12cf9b
c615d3a
 
 
 
 
f12cf9b
c615d3a
a0eface
c615d3a
 
f12cf9b
c615d3a
9281402
c615d3a
 
 
a0eface
c615d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
a0eface
c615d3a
 
 
 
 
 
 
 
 
 
 
 
a0eface
c615d3a
 
 
9281402
c615d3a
 
 
8a54381
c615d3a
a0eface
8a54381
c615d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---

language: 
- english
thumbnail: 
tags:
- token classification
license: agpl-3.0
datasets:
- EMBO/sd-nlp
metrics:
-
---


# sd-geneprod-roles

## Model description

This model is a [RoBERTa base model](https://huggingface.co./roberta-base) that was further trained using a masked language modeling task on a compendium of English scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co./datasets/EMBO/biolang). It was then fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co./datasets/EMBO/sd-nlp) dataset with the `GENEPROD_ROLES` configuration to perform pure context-dependent semantic role classification of bioentities.


## Intended uses & limitations

#### How to use

The intended use of this model is to infer the semantic role of gene products (genes and proteins) with regard to the causal hypotheses tested in experiments reported in scientific papers. 

To have a quick check of the model:

```python

from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification

example = """<s>The <mask> overexpression in cells caused an increase in <mask> expression.</s>"""

tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512)

model = RobertaForTokenClassification.from_pretrained('EMBO/sd-geneprod-roles')

ner = pipeline('ner', model, tokenizer=tokenizer)

res = ner(example)

for r in res:

    print(r['word'], r['entity'])

```

#### Limitations and bias

The model must be used with the `roberta-base` tokenizer.

## Training data

The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co./datasets/EMBO/sd-nlp) which includes manually annotated examples.

## Training procedure

The training was run on an NVIDIA DGX Station with 4XTesla V100 GPUs.

Training code is available at https://github.com/source-data/soda-roberta

- Model fine-tuned: EMBL/bio-lm
- Tokenizer vocab size: 50265
- Training data: EMBO/sd-nlp
- Dataset configuration: GENEPROD_ROLES

- Training with 48771 examples.

- Evaluating on 13801 examples.

- Training on 15 features: O, I-CONTROLLED_VAR, B-CONTROLLED_VAR, I-MEASURED_VAR, B-MEASURED_VAR

- Epochs: 0.9

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0

## Eval results

On 7178 example of test set with `sklearn.metrics`:

```                                                                             

                precision    recall  f1-score   support



CONTROLLED_VAR       0.81      0.86      0.83      7835

  MEASURED_VAR       0.82      0.85      0.84      9330



     micro avg       0.82      0.85      0.83     17165

     macro avg       0.82      0.85      0.83     17165

  weighted avg       0.82      0.85      0.83     17165

  

{'test_loss': 0.03846803680062294, 'test_accuracy_score': 0.9854472664459946, 'test_precision': 0.8156312625250501, 'test_recall': 0.8535974366443344, 'test_f1': 0.8341825841897008, 'test_runtime': 58.7369, 'test_samples_per_second': 122.206, 'test_steps_per_second': 1.924}

```