DrChamyoung commited on
Commit
4042589
1 Parent(s): 9a9e469

Create Model_Active.py

Browse files
Files changed (1) hide show
  1. Model_Active.py +163 -0
Model_Active.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import logging
3
+ import torch
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+ logger = logging.getLogger(__name__)
7
+
8
+
9
+ class RWKV_TimeMix(nn.Module):
10
+ def __init__(self, config, layer_id):
11
+ super().__init__()
12
+ assert config.n_attn % config.n_head == 0
13
+ self.layer_id = layer_id
14
+ self.ctx_len = config.ctx_len
15
+ self.n_head = config.n_head
16
+ self.head_size = config.n_attn // config.n_head
17
+
18
+ self.time_ww = nn.Parameter(
19
+ torch.ones(config.n_head, config.ctx_len, config.ctx_len))
20
+ self.time_gamma = nn.Parameter(torch.ones(config.ctx_len, 1))
21
+
22
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
23
+
24
+ self.key = nn.Linear(config.n_embd, config.n_attn)
25
+ self.value = nn.Linear(config.n_embd, config.n_attn)
26
+ self.receptance = nn.Linear(config.n_embd, config.n_attn)
27
+
28
+ self.output = nn.Linear(config.n_attn, config.n_embd)
29
+
30
+ self.key.scale_init = 0
31
+ self.receptance.scale_init = 0
32
+ self.output.scale_init = 0
33
+
34
+ def forward(self, x):
35
+ B, T, C = x.size()
36
+
37
+ x = torch.cat(
38
+ [self.time_shift(x[:, :, :C//2]), x[:, :, C//2:]], dim=-1)
39
+
40
+ k = self.key(x)
41
+ v = self.value(x)
42
+ r = self.receptance(x)
43
+
44
+ k = torch.clamp(k, max=30, min=-60)
45
+ k = torch.exp(k)
46
+ sum_k = torch.cumsum(k, dim=1)
47
+
48
+ kv = (k * v).view(B, T, self.n_head, self.head_size)
49
+
50
+ wkv = (torch.einsum('htu,buhc->bthc', self.time_ww[:,:T,:T], kv)
51
+ ).contiguous().view(B, T, -1)
52
+
53
+ rwkv = torch.sigmoid(r) * wkv / sum_k
54
+
55
+ rwkv = self.output(rwkv)
56
+ return rwkv * self.time_gamma[:T, :]
57
+
58
+ class RWKV_ChannelMix(nn.Module):
59
+ def __init__(self, config, layer_id):
60
+ super().__init__()
61
+ self.layer_id = layer_id
62
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
63
+
64
+ hidden_sz = 5 * config.n_ffn // 2
65
+ self.key = nn.Linear(config.n_embd, hidden_sz)
66
+ self.value = nn.Linear(config.n_embd, hidden_sz)
67
+ self.weight = nn.Linear(hidden_sz, config.n_embd)
68
+ self.receptance = nn.Linear(config.n_embd, config.n_embd)
69
+
70
+ self.receptance.scale_init = 0
71
+ self.weight.scale_init = 0
72
+
73
+ def forward(self, x):
74
+ B, T, C = x.size()
75
+
76
+ x = torch.cat(
77
+ [self.time_shift(x[:, :, :C//2]), x[:, :, C//2:]], dim=-1)
78
+ k = self.key(x)
79
+ v = self.value(x)
80
+ r = self.receptance(x)
81
+
82
+ wkv = self.weight(F.mish(k) * v)
83
+
84
+ rwkv = torch.sigmoid(r) * wkv
85
+
86
+ return rwkv
87
+
88
+
89
+ class GPTConfig:
90
+ def __init__(self, vocab_size, ctx_len, **kwargs):
91
+ self.vocab_size = vocab_size
92
+ self.ctx_len = ctx_len
93
+ for k, v in kwargs.items():
94
+ setattr(self, k, v)
95
+
96
+
97
+ class Block(nn.Module):
98
+ def __init__(self, config, layer_id):
99
+ super().__init__()
100
+ self.config = config
101
+
102
+ self.ln1 = nn.LayerNorm(config.n_embd)
103
+ self.ln2 = nn.LayerNorm(config.n_embd)
104
+
105
+ self.attn = RWKV_TimeMix(config, layer_id)
106
+ self.mlp = RWKV_ChannelMix(config, layer_id)
107
+
108
+ def forward(self, x):
109
+
110
+ x = x + self.attn(self.ln1(x))
111
+ x = x + self.mlp(self.ln2(x))
112
+
113
+ return x
114
+
115
+
116
+ class GPT(nn.Module):
117
+ def __init__(self, config):
118
+ super().__init__()
119
+ self.config = config
120
+
121
+ self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
122
+
123
+ self.blocks = nn.Sequential(*[Block(config, i)
124
+ for i in range(config.n_layer)])
125
+
126
+ self.ln_f = nn.LayerNorm(config.n_embd)
127
+ self.time_out = nn.Parameter(torch.ones(1, config.ctx_len, 1))
128
+ self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
129
+
130
+ self.head_q = nn.Linear(config.n_embd, 256)
131
+ self.head_k = nn.Linear(config.n_embd, 256)
132
+ self.register_buffer("copy_mask", torch.tril(torch.ones(config.ctx_len, config.ctx_len)))
133
+
134
+ self.ctx_len = config.ctx_len
135
+
136
+ logger.info("number of parameters: %e", sum(p.numel()
137
+ for p in self.parameters()))
138
+
139
+ def get_ctx_len(self):
140
+ return self.ctx_len
141
+
142
+ def forward(self, idx, targets=None):
143
+ B, T = idx.size()
144
+ assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
145
+
146
+ x = self.tok_emb(idx)
147
+
148
+ x = self.blocks(x)
149
+
150
+ x = self.ln_f(x)
151
+ q = self.head_q(x)[:,:T,:]
152
+ k = self.head_k(x)[:,:T,:]
153
+ c = (q @ k.transpose(-2, -1)) * (1.0 / 256)
154
+ c = c.masked_fill(self.copy_mask[:T,:T] == 0, 0)
155
+ c = c @ F.one_hot(idx, num_classes = self.config.vocab_size).float()
156
+ x = x * self.time_out[:, :T, :]
157
+ x = self.head(x) + c
158
+
159
+ loss = None
160
+ if targets is not None:
161
+ loss = F.cross_entropy(x.view(-1, x.size(-1)), targets.view(-1))
162
+
163
+ return x, loss