DrChamyoung
commited on
Commit
•
4042589
1
Parent(s):
9a9e469
Create Model_Active.py
Browse files- Model_Active.py +163 -0
Model_Active.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class RWKV_TimeMix(nn.Module):
|
10 |
+
def __init__(self, config, layer_id):
|
11 |
+
super().__init__()
|
12 |
+
assert config.n_attn % config.n_head == 0
|
13 |
+
self.layer_id = layer_id
|
14 |
+
self.ctx_len = config.ctx_len
|
15 |
+
self.n_head = config.n_head
|
16 |
+
self.head_size = config.n_attn // config.n_head
|
17 |
+
|
18 |
+
self.time_ww = nn.Parameter(
|
19 |
+
torch.ones(config.n_head, config.ctx_len, config.ctx_len))
|
20 |
+
self.time_gamma = nn.Parameter(torch.ones(config.ctx_len, 1))
|
21 |
+
|
22 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
23 |
+
|
24 |
+
self.key = nn.Linear(config.n_embd, config.n_attn)
|
25 |
+
self.value = nn.Linear(config.n_embd, config.n_attn)
|
26 |
+
self.receptance = nn.Linear(config.n_embd, config.n_attn)
|
27 |
+
|
28 |
+
self.output = nn.Linear(config.n_attn, config.n_embd)
|
29 |
+
|
30 |
+
self.key.scale_init = 0
|
31 |
+
self.receptance.scale_init = 0
|
32 |
+
self.output.scale_init = 0
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
B, T, C = x.size()
|
36 |
+
|
37 |
+
x = torch.cat(
|
38 |
+
[self.time_shift(x[:, :, :C//2]), x[:, :, C//2:]], dim=-1)
|
39 |
+
|
40 |
+
k = self.key(x)
|
41 |
+
v = self.value(x)
|
42 |
+
r = self.receptance(x)
|
43 |
+
|
44 |
+
k = torch.clamp(k, max=30, min=-60)
|
45 |
+
k = torch.exp(k)
|
46 |
+
sum_k = torch.cumsum(k, dim=1)
|
47 |
+
|
48 |
+
kv = (k * v).view(B, T, self.n_head, self.head_size)
|
49 |
+
|
50 |
+
wkv = (torch.einsum('htu,buhc->bthc', self.time_ww[:,:T,:T], kv)
|
51 |
+
).contiguous().view(B, T, -1)
|
52 |
+
|
53 |
+
rwkv = torch.sigmoid(r) * wkv / sum_k
|
54 |
+
|
55 |
+
rwkv = self.output(rwkv)
|
56 |
+
return rwkv * self.time_gamma[:T, :]
|
57 |
+
|
58 |
+
class RWKV_ChannelMix(nn.Module):
|
59 |
+
def __init__(self, config, layer_id):
|
60 |
+
super().__init__()
|
61 |
+
self.layer_id = layer_id
|
62 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
63 |
+
|
64 |
+
hidden_sz = 5 * config.n_ffn // 2
|
65 |
+
self.key = nn.Linear(config.n_embd, hidden_sz)
|
66 |
+
self.value = nn.Linear(config.n_embd, hidden_sz)
|
67 |
+
self.weight = nn.Linear(hidden_sz, config.n_embd)
|
68 |
+
self.receptance = nn.Linear(config.n_embd, config.n_embd)
|
69 |
+
|
70 |
+
self.receptance.scale_init = 0
|
71 |
+
self.weight.scale_init = 0
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
B, T, C = x.size()
|
75 |
+
|
76 |
+
x = torch.cat(
|
77 |
+
[self.time_shift(x[:, :, :C//2]), x[:, :, C//2:]], dim=-1)
|
78 |
+
k = self.key(x)
|
79 |
+
v = self.value(x)
|
80 |
+
r = self.receptance(x)
|
81 |
+
|
82 |
+
wkv = self.weight(F.mish(k) * v)
|
83 |
+
|
84 |
+
rwkv = torch.sigmoid(r) * wkv
|
85 |
+
|
86 |
+
return rwkv
|
87 |
+
|
88 |
+
|
89 |
+
class GPTConfig:
|
90 |
+
def __init__(self, vocab_size, ctx_len, **kwargs):
|
91 |
+
self.vocab_size = vocab_size
|
92 |
+
self.ctx_len = ctx_len
|
93 |
+
for k, v in kwargs.items():
|
94 |
+
setattr(self, k, v)
|
95 |
+
|
96 |
+
|
97 |
+
class Block(nn.Module):
|
98 |
+
def __init__(self, config, layer_id):
|
99 |
+
super().__init__()
|
100 |
+
self.config = config
|
101 |
+
|
102 |
+
self.ln1 = nn.LayerNorm(config.n_embd)
|
103 |
+
self.ln2 = nn.LayerNorm(config.n_embd)
|
104 |
+
|
105 |
+
self.attn = RWKV_TimeMix(config, layer_id)
|
106 |
+
self.mlp = RWKV_ChannelMix(config, layer_id)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
|
110 |
+
x = x + self.attn(self.ln1(x))
|
111 |
+
x = x + self.mlp(self.ln2(x))
|
112 |
+
|
113 |
+
return x
|
114 |
+
|
115 |
+
|
116 |
+
class GPT(nn.Module):
|
117 |
+
def __init__(self, config):
|
118 |
+
super().__init__()
|
119 |
+
self.config = config
|
120 |
+
|
121 |
+
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
|
122 |
+
|
123 |
+
self.blocks = nn.Sequential(*[Block(config, i)
|
124 |
+
for i in range(config.n_layer)])
|
125 |
+
|
126 |
+
self.ln_f = nn.LayerNorm(config.n_embd)
|
127 |
+
self.time_out = nn.Parameter(torch.ones(1, config.ctx_len, 1))
|
128 |
+
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
129 |
+
|
130 |
+
self.head_q = nn.Linear(config.n_embd, 256)
|
131 |
+
self.head_k = nn.Linear(config.n_embd, 256)
|
132 |
+
self.register_buffer("copy_mask", torch.tril(torch.ones(config.ctx_len, config.ctx_len)))
|
133 |
+
|
134 |
+
self.ctx_len = config.ctx_len
|
135 |
+
|
136 |
+
logger.info("number of parameters: %e", sum(p.numel()
|
137 |
+
for p in self.parameters()))
|
138 |
+
|
139 |
+
def get_ctx_len(self):
|
140 |
+
return self.ctx_len
|
141 |
+
|
142 |
+
def forward(self, idx, targets=None):
|
143 |
+
B, T = idx.size()
|
144 |
+
assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
|
145 |
+
|
146 |
+
x = self.tok_emb(idx)
|
147 |
+
|
148 |
+
x = self.blocks(x)
|
149 |
+
|
150 |
+
x = self.ln_f(x)
|
151 |
+
q = self.head_q(x)[:,:T,:]
|
152 |
+
k = self.head_k(x)[:,:T,:]
|
153 |
+
c = (q @ k.transpose(-2, -1)) * (1.0 / 256)
|
154 |
+
c = c.masked_fill(self.copy_mask[:T,:T] == 0, 0)
|
155 |
+
c = c @ F.one_hot(idx, num_classes = self.config.vocab_size).float()
|
156 |
+
x = x * self.time_out[:, :T, :]
|
157 |
+
x = self.head(x) + c
|
158 |
+
|
159 |
+
loss = None
|
160 |
+
if targets is not None:
|
161 |
+
loss = F.cross_entropy(x.view(-1, x.size(-1)), targets.view(-1))
|
162 |
+
|
163 |
+
return x, loss
|