Upload quantization.py with huggingface_hub
Browse files- quantization.py +397 -0
quantization.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.cuda.amp import custom_bwd, custom_fwd
|
5 |
+
import math
|
6 |
+
|
7 |
+
|
8 |
+
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
|
9 |
+
if type(module) in layers:
|
10 |
+
return {name: module}
|
11 |
+
res = {}
|
12 |
+
for name1, child in module.named_children():
|
13 |
+
res.update(find_layers(
|
14 |
+
child, layers=layers, name=name + '.' + name1 if name != '' else name1
|
15 |
+
))
|
16 |
+
return res
|
17 |
+
|
18 |
+
|
19 |
+
try:
|
20 |
+
import triton
|
21 |
+
import triton.language as tl
|
22 |
+
from .custom_autotune import *
|
23 |
+
except:
|
24 |
+
print('triton not installed. Run `pip install triton` to load quantized version of MOSS.')
|
25 |
+
|
26 |
+
# code based https://github.com/fpgaminer/GPTQ-triton
|
27 |
+
@autotune(
|
28 |
+
configs=[
|
29 |
+
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
30 |
+
num_stages=4, num_warps=4),
|
31 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
32 |
+
num_stages=4, num_warps=4),
|
33 |
+
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
34 |
+
num_stages=4, num_warps=4),
|
35 |
+
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
36 |
+
num_stages=4, num_warps=4),
|
37 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
38 |
+
num_stages=4, num_warps=4),
|
39 |
+
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
40 |
+
num_stages=4, num_warps=4),
|
41 |
+
# These provided a benefit on a 3090
|
42 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
|
43 |
+
num_warps=4),
|
44 |
+
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
|
45 |
+
num_warps=4),
|
46 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
|
47 |
+
num_warps=4),
|
48 |
+
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
|
49 |
+
num_warps=4),
|
50 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
|
51 |
+
num_warps=4),
|
52 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
|
53 |
+
num_warps=4),
|
54 |
+
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
|
55 |
+
num_stages=4, num_warps=4),
|
56 |
+
],
|
57 |
+
key=['M', 'N'],
|
58 |
+
nearest_power_of_two=True,
|
59 |
+
)
|
60 |
+
@triton.jit
|
61 |
+
def matmul_248_kernel(a_ptr, b_ptr, c_ptr,
|
62 |
+
scales_ptr, zeros_ptr, g_ptr,
|
63 |
+
M, N, K, bits, maxq,
|
64 |
+
stride_am, stride_ak,
|
65 |
+
stride_bk, stride_bn,
|
66 |
+
stride_cm, stride_cn,
|
67 |
+
stride_scales, stride_zeros,
|
68 |
+
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
69 |
+
GROUP_SIZE_M: tl.constexpr):
|
70 |
+
"""
|
71 |
+
Compute the matrix multiplication C = A x B.
|
72 |
+
A is of shape (M, K) float16
|
73 |
+
B is of shape (K//8, N) int32
|
74 |
+
C is of shape (M, N) float16
|
75 |
+
scales is of shape (G, N) float16
|
76 |
+
zeros is of shape (G, N) float16
|
77 |
+
g_ptr is of shape (K) int32
|
78 |
+
"""
|
79 |
+
infearure_per_bits = 32 // bits
|
80 |
+
|
81 |
+
pid = tl.program_id(axis=0)
|
82 |
+
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
83 |
+
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
84 |
+
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
85 |
+
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
86 |
+
group_id = pid // num_pid_in_group
|
87 |
+
first_pid_m = group_id * GROUP_SIZE_M
|
88 |
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
89 |
+
pid_m = first_pid_m + (pid % group_size_m)
|
90 |
+
pid_n = (pid % num_pid_in_group) // group_size_m
|
91 |
+
|
92 |
+
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
93 |
+
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
94 |
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
95 |
+
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
96 |
+
a_mask = (offs_am[:, None] < M)
|
97 |
+
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
98 |
+
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None,
|
99 |
+
:] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
100 |
+
g_ptrs = g_ptr + offs_k
|
101 |
+
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
102 |
+
scales_ptrs = scales_ptr + offs_bn[None, :]
|
103 |
+
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
|
104 |
+
|
105 |
+
shifter = (offs_k % infearure_per_bits) * bits
|
106 |
+
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
107 |
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
108 |
+
|
109 |
+
for k in range(0, num_pid_k):
|
110 |
+
g_idx = tl.load(g_ptrs)
|
111 |
+
|
112 |
+
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
113 |
+
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
114 |
+
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
115 |
+
|
116 |
+
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
117 |
+
zeros = (zeros + 1)
|
118 |
+
|
119 |
+
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
120 |
+
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
121 |
+
|
122 |
+
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
123 |
+
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
124 |
+
b = (b - zeros) * scales # Scale and shift
|
125 |
+
|
126 |
+
accumulator += tl.dot(a, b)
|
127 |
+
a_ptrs += BLOCK_SIZE_K
|
128 |
+
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
129 |
+
g_ptrs += BLOCK_SIZE_K
|
130 |
+
|
131 |
+
c = accumulator.to(tl.float16)
|
132 |
+
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
133 |
+
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
134 |
+
tl.store(c_ptrs, accumulator, mask=c_mask)
|
135 |
+
|
136 |
+
|
137 |
+
# code based https://github.com/fpgaminer/GPTQ-triton
|
138 |
+
@autotune(
|
139 |
+
configs=[
|
140 |
+
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
|
141 |
+
num_stages=4, num_warps=4),
|
142 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
|
143 |
+
num_stages=4, num_warps=4),
|
144 |
+
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
|
145 |
+
num_stages=4, num_warps=4),
|
146 |
+
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
|
147 |
+
num_stages=4, num_warps=4),
|
148 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
|
149 |
+
num_stages=4, num_warps=4),
|
150 |
+
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
|
151 |
+
num_stages=4, num_warps=4),
|
152 |
+
# These provided a benefit on a 3090
|
153 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
|
154 |
+
num_warps=4),
|
155 |
+
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
|
156 |
+
num_warps=4),
|
157 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
|
158 |
+
num_warps=4),
|
159 |
+
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
|
160 |
+
num_warps=4),
|
161 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
|
162 |
+
num_warps=4),
|
163 |
+
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
|
164 |
+
num_warps=4),
|
165 |
+
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 128, 'GROUP_SIZE_M': 8},
|
166 |
+
num_stages=4, num_warps=4),
|
167 |
+
],
|
168 |
+
key=['M', 'K'],
|
169 |
+
nearest_power_of_two=True,
|
170 |
+
)
|
171 |
+
@triton.jit
|
172 |
+
def trans_matmul_248_kernel(a_ptr, b_ptr, c_ptr,
|
173 |
+
scales_ptr, zeros_ptr, g_ptr,
|
174 |
+
M, N, K, bits, maxq,
|
175 |
+
stride_am, stride_ak,
|
176 |
+
stride_bk, stride_bn,
|
177 |
+
stride_cm, stride_cn,
|
178 |
+
stride_scales, stride_zeros,
|
179 |
+
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
180 |
+
GROUP_SIZE_M: tl.constexpr):
|
181 |
+
"""
|
182 |
+
Compute the matrix multiplication C = A x B.
|
183 |
+
A is of shape (M, N) float16
|
184 |
+
B is of shape (K//8, N) int32
|
185 |
+
C is of shape (M, K) float16
|
186 |
+
scales is of shape (G, N) float16
|
187 |
+
zeros is of shape (G, N) float16
|
188 |
+
g_ptr is of shape (K) int32
|
189 |
+
"""
|
190 |
+
infearure_per_bits = 32 // bits
|
191 |
+
|
192 |
+
pid = tl.program_id(axis=0)
|
193 |
+
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
194 |
+
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
195 |
+
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
196 |
+
num_pid_in_group = GROUP_SIZE_M * num_pid_k
|
197 |
+
group_id = pid // num_pid_in_group
|
198 |
+
first_pid_m = group_id * GROUP_SIZE_M
|
199 |
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
200 |
+
pid_m = first_pid_m + (pid % group_size_m)
|
201 |
+
pid_k = (pid % num_pid_in_group) // group_size_m
|
202 |
+
|
203 |
+
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
204 |
+
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
|
205 |
+
offs_n = tl.arange(0, BLOCK_SIZE_N)
|
206 |
+
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
207 |
+
a_mask = (offs_am[:, None] < M)
|
208 |
+
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
209 |
+
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None,
|
210 |
+
:] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
211 |
+
g_ptrs = g_ptr + offs_bk
|
212 |
+
g_idx = tl.load(g_ptrs)
|
213 |
+
|
214 |
+
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
215 |
+
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
|
216 |
+
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
|
217 |
+
|
218 |
+
shifter = (offs_bk % infearure_per_bits) * bits
|
219 |
+
zeros_shifter = (offs_n % infearure_per_bits) * bits
|
220 |
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
|
221 |
+
|
222 |
+
for k in range(0, num_pid_n):
|
223 |
+
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
224 |
+
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
225 |
+
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
226 |
+
|
227 |
+
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
228 |
+
zeros = (zeros + 1)
|
229 |
+
|
230 |
+
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
231 |
+
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
232 |
+
|
233 |
+
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
234 |
+
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
235 |
+
b = (b - zeros) * scales # Scale and shift
|
236 |
+
b = tl.trans(b)
|
237 |
+
|
238 |
+
accumulator += tl.dot(a, b)
|
239 |
+
a_ptrs += BLOCK_SIZE_N
|
240 |
+
b_ptrs += BLOCK_SIZE_N
|
241 |
+
scales_ptrs += BLOCK_SIZE_N
|
242 |
+
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
|
243 |
+
|
244 |
+
c = accumulator.to(tl.float16)
|
245 |
+
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
|
246 |
+
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
|
247 |
+
tl.store(c_ptrs, accumulator, mask=c_mask)
|
248 |
+
|
249 |
+
|
250 |
+
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
251 |
+
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
|
252 |
+
grid = lambda META: (
|
253 |
+
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),)
|
254 |
+
matmul_248_kernel[grid](input, qweight, output,
|
255 |
+
scales, qzeros, g_idx,
|
256 |
+
input.shape[0], qweight.shape[1], input.shape[1], bits, maxq,
|
257 |
+
input.stride(0), input.stride(1),
|
258 |
+
qweight.stride(0), qweight.stride(1),
|
259 |
+
output.stride(0), output.stride(1),
|
260 |
+
scales.stride(0), qzeros.stride(0))
|
261 |
+
return output
|
262 |
+
|
263 |
+
|
264 |
+
def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
265 |
+
output_dim = (qweight.shape[0] * 32) // bits
|
266 |
+
output = torch.empty((input.shape[0], output_dim), device='cuda', dtype=torch.float16)
|
267 |
+
grid = lambda META: (
|
268 |
+
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']),)
|
269 |
+
transpose_matmul_248_kernel[grid](input, qweight, output,
|
270 |
+
scales, qzeros, g_idx,
|
271 |
+
input.shape[0], qweight.shape[1], output_dim, bits, maxq,
|
272 |
+
input.stride(0), input.stride(1),
|
273 |
+
qweight.stride(0), qweight.stride(1),
|
274 |
+
output.stride(0), output.stride(1),
|
275 |
+
scales.stride(0), qzeros.stride(0))
|
276 |
+
return output
|
277 |
+
|
278 |
+
|
279 |
+
class QuantLinearFunction(torch.autograd.Function):
|
280 |
+
@staticmethod
|
281 |
+
@custom_fwd(cast_inputs=torch.float16)
|
282 |
+
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
|
283 |
+
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
|
284 |
+
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
|
285 |
+
ctx.bits, ctx.maxq = bits, maxq
|
286 |
+
return output
|
287 |
+
|
288 |
+
@staticmethod
|
289 |
+
@custom_bwd
|
290 |
+
def backward(ctx, grad_output):
|
291 |
+
qweight, scales, qzeros, g_idx = ctx.saved_tensors
|
292 |
+
bits, maxq = ctx.bits, ctx.maxq
|
293 |
+
grad_input = None
|
294 |
+
|
295 |
+
if ctx.needs_input_grad[0]:
|
296 |
+
grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
|
297 |
+
return grad_input, None, None, None, None, None, None
|
298 |
+
|
299 |
+
class QuantLinear(nn.Module):
|
300 |
+
def __init__(self, bits, groupsize, infeatures, outfeatures, bias):
|
301 |
+
super().__init__()
|
302 |
+
if bits not in [2, 4, 8]:
|
303 |
+
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
304 |
+
self.infeatures = infeatures
|
305 |
+
self.outfeatures = outfeatures
|
306 |
+
self.bits = bits
|
307 |
+
self.maxq = 2 ** self.bits - 1
|
308 |
+
self.groupsize = groupsize if groupsize != -1 else infeatures
|
309 |
+
|
310 |
+
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
|
311 |
+
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
|
312 |
+
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
|
313 |
+
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
|
314 |
+
if bias:
|
315 |
+
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
316 |
+
else:
|
317 |
+
self.bias = None
|
318 |
+
|
319 |
+
def pack(self, linear, scales, zeros, g_idx=None):
|
320 |
+
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
|
321 |
+
|
322 |
+
scales = scales.t().contiguous()
|
323 |
+
zeros = zeros.t().contiguous()
|
324 |
+
scale_zeros = zeros * scales
|
325 |
+
self.scales = scales.clone().half()
|
326 |
+
if linear.bias is not None:
|
327 |
+
self.bias = linear.bias.clone().half()
|
328 |
+
|
329 |
+
intweight = []
|
330 |
+
for idx in range(self.infeatures):
|
331 |
+
intweight.append(torch.round(
|
332 |
+
(linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(
|
333 |
+
torch.int)[:, None])
|
334 |
+
intweight = torch.cat(intweight, dim=1)
|
335 |
+
intweight = intweight.t().contiguous()
|
336 |
+
intweight = intweight.numpy().astype(np.uint32)
|
337 |
+
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
|
338 |
+
i = 0
|
339 |
+
row = 0
|
340 |
+
while row < qweight.shape[0]:
|
341 |
+
if self.bits in [2, 4, 8]:
|
342 |
+
for j in range(i, i + (32 // self.bits)):
|
343 |
+
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
344 |
+
i += 32 // self.bits
|
345 |
+
row += 1
|
346 |
+
else:
|
347 |
+
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
348 |
+
|
349 |
+
qweight = qweight.astype(np.int32)
|
350 |
+
self.qweight = torch.from_numpy(qweight)
|
351 |
+
|
352 |
+
zeros -= 1
|
353 |
+
zeros = zeros.numpy().astype(np.uint32)
|
354 |
+
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
|
355 |
+
i = 0
|
356 |
+
col = 0
|
357 |
+
while col < qzeros.shape[1]:
|
358 |
+
if self.bits in [2, 4, 8]:
|
359 |
+
for j in range(i, i + (32 // self.bits)):
|
360 |
+
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
361 |
+
i += 32 // self.bits
|
362 |
+
col += 1
|
363 |
+
else:
|
364 |
+
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
365 |
+
|
366 |
+
qzeros = qzeros.astype(np.int32)
|
367 |
+
self.qzeros = torch.from_numpy(qzeros)
|
368 |
+
|
369 |
+
def forward(self, x):
|
370 |
+
out_shape = x.shape[:-1] + (self.outfeatures,)
|
371 |
+
out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales,
|
372 |
+
self.qzeros, self.g_idx, self.bits, self.maxq)
|
373 |
+
out = out + self.bias if self.bias is not None else out
|
374 |
+
return out.reshape(out_shape)
|
375 |
+
|
376 |
+
def make_quant(module, names, bits, groupsize, name=''):
|
377 |
+
if isinstance(module, QuantLinear):
|
378 |
+
return
|
379 |
+
for attr in dir(module):
|
380 |
+
tmp = getattr(module, attr)
|
381 |
+
name1 = name + '.' + attr if name != '' else attr
|
382 |
+
if name1 in names:
|
383 |
+
delattr(module, attr)
|
384 |
+
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
|
385 |
+
for name1, child in module.named_children():
|
386 |
+
make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
|
387 |
+
|
388 |
+
|
389 |
+
def quantize_with_gptq(model, wbits, groupsize):
|
390 |
+
model = model.eval()
|
391 |
+
layers = find_layers(model)
|
392 |
+
for name in ['lm_head']:
|
393 |
+
if name in layers:
|
394 |
+
del layers[name]
|
395 |
+
make_quant(model, layers, wbits, groupsize)
|
396 |
+
# model.load_state_dict(torch.load(checkpoint))
|
397 |
+
return model
|