--- language: - ko library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- **The license is `cc-by-nc-sa-4.0`.** # **🐻‍❄️SOLARC-MOE-10.7Bx4🐻‍❄️** ![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG) ## Model Details **Model Developers** Seungyoo Lee(DopeorNope) I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** SOLARC-MOE-10.7Bx4 is an auto-regressive language model based on the SOLAR architecture. --- ## **Base Model** [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co./kyujinpy/Sakura-SOLAR-Instruct) [Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co./Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct) [VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co./VAGOsolutions/SauerkrautLM-SOLAR-Instruct) [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) ## **Implemented Method** I have built a model using the Mixture of Experts (MOE) approach, utilizing each of these models as the base. --- # Implementation Code ## Load model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "DopeorNope/SOLARC-MOE-10.7Bx4" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---