File size: 37,209 Bytes
1a0236b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

import warnings
from typing import Any, List, Optional, Tuple, Union

import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

import torch.utils.checkpoint
import transformers

from .modeling_internlm2 import InternLM2ForCausalLM
from .modeling_phi3 import Phi3ForCausalLM
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
                          LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from transformers import StoppingCriteriaList, StoppingCriteria

from .configuration_sa2va_chat import Sa2VAChatConfig
from .modeling_intern_vit import InternVisionModel, has_flash_attn

from .sam2 import SAM2
from .templates import PROMPT_TEMPLATE

import numpy as np
from torchvision.transforms.functional import resize, to_pil_image

from types import MethodType
import torch.nn.functional as F

try:
    from .flash_attention import FlashAttention
    has_flash_attn = True
except:
    print('FlashAttention is not installed.')
    has_flash_attn = False

logger = logging.get_logger(__name__)

def version_cmp(v1, v2, op='eq'):
    import operator

    from packaging import version
    op_func = getattr(operator, op)
    return op_func(version.parse(v1), version.parse(v2))

class StopWordStoppingCriteria(StoppingCriteria):
    """StopWord stopping criteria."""

    def __init__(self, tokenizer, stop_word):
        self.tokenizer = tokenizer
        self.stop_word = stop_word
        self.length = len(self.stop_word)

    def __call__(self, input_ids, *args, **kwargs) -> bool:
        cur_text = self.tokenizer.decode(input_ids[0])
        cur_text = cur_text.replace('\r', '').replace('\n', '')
        return cur_text[-self.length:] == self.stop_word

def get_stop_criteria(
    tokenizer,
    stop_words=[],
):
    stop_criteria = StoppingCriteriaList()
    for word in stop_words:
        stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
    return stop_criteria

class DirectResize:
    def __init__(self, target_length: int) -> None:
        self.target_length = target_length

    def apply_image(self, image: np.ndarray) -> np.ndarray:
        """
        Expects a numpy array with shape HxWxC in uint8 format.
        """
        img = to_pil_image(image, mode='RGB')
        return np.array(img.resize((self.target_length, self.target_length)))

class Sa2VAChatModel(PreTrainedModel):
    config_class = Sa2VAChatConfig
    main_input_name = 'pixel_values'
    base_model_prefix = 'language_model'
    _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
                         'Phi3DecoderLayer', 'Qwen2DecoderLayer', 'SAM2']
    _supports_flash_attn_2 = True
    supports_gradient_checkpointing = True

    def __init__(self, config: Sa2VAChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
        super().__init__(config)

        assert version_cmp(transformers.__version__, '4.37.0', 'ge')
        image_size = config.force_image_size or config.vision_config.image_size
        patch_size = config.vision_config.patch_size
        self.patch_size = patch_size
        self.select_layer = config.select_layer
        self.template = config.template
        self.template = self.template.replace('-', '_')
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.downsample_ratio = config.downsample_ratio
        self.ps_version = config.ps_version
        self.llm_arch_name = config.llm_config.architectures[0]

        use_flash_attn = use_flash_attn if has_flash_attn else False
        config.vision_config.use_flash_attn = True if use_flash_attn else False
        config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'

        logger.info(f'num_image_token: {self.num_image_token}')
        logger.info(f'ps_version: {self.ps_version}')
        if vision_model is not None:
            self.vision_model = vision_model
        else:
            self.vision_model = InternVisionModel(config.vision_config)
        if language_model is not None:
            self.language_model = language_model
        else:
            if config.llm_config.architectures[0] == 'LlamaForCausalLM':
                self.language_model = LlamaForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
                self.language_model = InternLM2ForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
                self.language_model = Phi3ForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
                self.language_model = Qwen2ForCausalLM(config.llm_config)
            else:
                raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')

        vit_hidden_size = config.vision_config.hidden_size
        llm_hidden_size = config.llm_config.hidden_size

        self.mlp1 = nn.Sequential(
            nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
            nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
            nn.GELU(),
            nn.Linear(llm_hidden_size, llm_hidden_size)
        )

        self.img_context_token_id = None
        self.conv_template = PROMPT_TEMPLATE[self.template]
        self.template = self.conv_template
        if hasattr(config, 'system_message'):
            self.system_message = config.system_message
        self.num_samples = 0

        if config.use_backbone_lora:
            self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)

        if config.use_llm_lora:
            self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)

        self.grounding_encoder = SAM2()
        out_dim = self.grounding_encoder.hidden_dim
        in_dim = llm_hidden_size
        self.text_hidden_fcs = nn.Sequential(
            nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
            nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
        )

        self.init_prediction_config = False

    def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )
        self.vision_model = get_peft_model(self.vision_model, lora_config)
        self.vision_model.print_trainable_parameters()

    def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        # Determine the target modules based on the architecture of the language model
        if self.llm_arch_name == 'InternLM2ForCausalLM':
            target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
        elif self.llm_arch_name == 'Phi3ForCausalLM':
            target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
        elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
            target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
                              'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
        else:
            raise NotImplemented
        lora_config = LoraConfig(
            r=r,
            target_modules=target_modules,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            task_type='CAUSAL_LM'
        )
        self.language_model = get_peft_model(self.language_model, lora_config)
        self.language_model.enable_input_require_grads()
        self.language_model.print_trainable_parameters()

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        if self.ps_version == 'v1':
            warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
                          'which results in a transposed image.')
        else:
            x = x.permute(0, 2, 1, 3).contiguous()
        return x

    def extract_feature(self, pixel_values):
        if self.select_layer == -1:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=False,
                return_dict=True).last_hidden_state
        else:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=True,
                return_dict=True).hidden_states[self.select_layer]
        vit_embeds = vit_embeds[:, 1:, :]

        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        vit_embeds = self.mlp1(vit_embeds)
        return vit_embeds

    @property
    def lm_head(self):
        return self.language_model.get_output_embeddings()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def forward(self, data, data_samples=None, mode='loss'):
        pixel_values = data['pixel_values']

        if type(pixel_values) is list or pixel_values.ndim == 5:
            if type(pixel_values) is list:
                pixel_values = [
                    x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
                ]
            # b*n, c, h, w
            concat_images = torch.cat(
                [image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
        else:
            raise NotImplementedError()

        input_ids = data['input_ids']
        position_ids = data['position_ids']
        attention_mask = data['attention_mask']
        # sum is 0 are text
        image_flags = torch.sum(concat_images, dim=(1, 2, 3)) != 0
        image_flags = image_flags.long()

        labels = data['labels']
        use_cache = False

        if 'vp_overall_mask' not in data.keys():
            vp_overall_mask = None
        else:
            vp_overall_mask = data['vp_overall_mask']

        if 'prompt_masks' in data.keys():
            prompt_masks = data['prompt_masks']
        else:
            prompt_masks = None

        outputs = self._llm_forward(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            image_flags=image_flags,
            pixel_values=concat_images,
            labels=labels,
            use_cache=use_cache,
            output_hidden_states=True,
            vp_overall_mask=vp_overall_mask,
            prompt_masks=prompt_masks,
        )

        return outputs

    def _llm_forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            vp_overall_mask=None,
            prompt_masks=None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None \
            else self.config.use_return_dict

        image_flags = image_flags.squeeze(-1)
        # We only added the clone code here to avoid the error.
        input_embeds = self.language_model.get_input_embeddings()(
            input_ids).clone()

        vit_embeds = self.extract_feature(pixel_values)
        vit_embeds = vit_embeds.to(input_embeds.dtype)  # FIXME: why vit_embeds is float16?
        fast_vit_embeds = None

        vit_embeds = vit_embeds[image_flags == 1]
        vit_batch_size = pixel_values.shape[0]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        self._count += 1

        if vp_overall_mask is not None and prompt_masks is not None:
            vp_embeds = []
            vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
            prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]

            vp_overall_mask = vp_overall_mask[image_flags == 1]
            overall_tile_vit_embeds = vit_embeds[vp_overall_mask]  # (n_img, hw, c)

            i_vp_img = 0
            for i_img in range(len(vit_embeds)):
                vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
                if vp_overall_mask[i_img]:
                    tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C)  # (hw, C)
                    objects_prompt_masks = prompt_masks[i_vp_img]
                    n_obj = len(objects_prompt_masks)
                    tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
                    objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
                    vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
                    i_vp_img += 1
            vp_embeds = torch.cat(vp_embeds, dim=0)
        else:
            vp_embeds = None

        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.img_context_token_id)

        if vp_embeds is None:
            try:
                input_embeds[selected] = vit_embeds.reshape(-1, C)
            except Exception as e:
                vit_embeds = vit_embeds.reshape(-1, C)
                print(f'warning: {e}, input_embeds[selected].shape='
                      f'{input_embeds[selected].shape}, '
                      f'vit_embeds.shape={vit_embeds.shape}')
                n_token = selected.sum()
                if n_token > len(vit_embeds):
                    print(f"Wrong !!! {n_token} image tokens in text but only {len(vit_embeds)} vit embeds !!!")
                    expand_ratio = n_token // len(vit_embeds) + 1
                    vit_embeds = torch.cat([vit_embeds] * expand_ratio, dim=0)

                input_embeds[selected] = vit_embeds[:n_token]
        else:
            try:
                input_embeds[selected] = vp_embeds.reshape(-1, C)
            except Exception as e:
                vp_embeds = vp_embeds.reshape(-1, C)
                print(f'warning: {e}, input_embeds[selected].shape='
                      f'{input_embeds[selected].shape}, '
                      f'vp_embeds.shape={vp_embeds.shape}')
                n_token = selected.sum()
                if n_token > len(vp_embeds):
                    print(f"Wrong !!! {n_token} image tokens in text but only {len(vp_embeds)} vit embeds !!!")
                    expand_ratio = n_token // len(vp_embeds) + 1
                    vp_embeds = torch.cat([vp_embeds] * expand_ratio, dim=0)

                input_embeds[selected] = vp_embeds[:n_token]

        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(
                -1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    @torch.no_grad()
    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            prompt_masks=None,
            vp_overall_mask=None,
            **generate_kwargs,
    ) -> torch.LongTensor:
        device = self.device
        assert self.img_context_token_id is not None

        if pixel_values is not None:
            if visual_features is not None:
                vit_embeds = visual_features
            else:
                if type(pixel_values) is list or pixel_values.ndim == 5:
                    if type(pixel_values) is list:
                        pixel_values = [
                            x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
                        ]
                    # b*n, c, h, w
                    pixel_values = torch.cat(
                        [image.to(self.vision_model.dtype) for image in pixel_values], dim=0)

                vit_embeds = self.extract_feature(pixel_values.to(device))
            image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0
            image_flags = image_flags.long()
            vit_embeds = vit_embeds[image_flags == 1]

            input_embeds = self.language_model.get_input_embeddings()(input_ids.to(device))
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)

            if vp_overall_mask is not None and prompt_masks is not None:
                vp_embeds = []
                vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
                prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]

                vp_overall_mask = vp_overall_mask[image_flags == 1]
                overall_tile_vit_embeds = vit_embeds[vp_overall_mask]  # (n_img, hw, c)

                i_vp_img = 0
                for i_img in range(len(vit_embeds)):
                    vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
                    if vp_overall_mask[i_img]:
                        tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C)  # (hw, C)
                        objects_prompt_masks = prompt_masks[i_vp_img]
                        n_obj = len(objects_prompt_masks)
                        tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
                        objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
                        vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
                        i_vp_img += 1

                vp_embeds = torch.cat(vp_embeds, dim=0)
            else:
                vp_embeds = None

            input_ids = input_ids.reshape(B * N)
            selected = (input_ids == self.img_context_token_id)
            assert selected.sum() != 0
            if vp_embeds is None:
                input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
            else:
                if len(input_embeds[selected]) != len(vp_embeds.reshape(-1, C)):
                    print("Shape mismatch, selected is {}, vp embeds is {} !!!" \
                          .format(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C))))
                    min_tokens = min(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C)))
                    input_embeds[selected][:min_tokens] = vp_embeds.reshape(-1, C)[:min_tokens].to(input_embeds.device)
                else:
                    input_embeds[selected] = vp_embeds.reshape(-1, C).to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, N, C)
        else:
            input_embeds = self.language_model.get_input_embeddings()(input_ids)

        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask.to(device),
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs

    def preparing_for_generation(self, tokenizer, max_new_tokens=2048, torch_dtype=torch.bfloat16):
        # set stop criteria and generation configs for model
        if not hasattr(self, 'tokenizer'):
            self.tokenizer = tokenizer
        self.bot_name = 'BOT'
        stop_words = []
        stop_words += self.template.get('STOP_WORDS', [])
        stop_criteria = get_stop_criteria(
            tokenizer=self.tokenizer, stop_words=stop_words)
        self.stop_criteria = stop_criteria

        default_generation_kwargs = dict(
            max_new_tokens=max_new_tokens,
            do_sample=False,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=(
                self.tokenizer.pad_token_id
                if self.tokenizer.pad_token_id is not None
                else self.tokenizer.eos_token_id
            ),
        )

        self.gen_config = GenerationConfig(**default_generation_kwargs)
        self.init_prediction_config = True
        self.torch_dtype = torch_dtype
        self.to(torch_dtype)
        self.extra_image_processor = DirectResize(target_length=1024, )
        # for multi image process
        self.min_dynamic_patch = 1
        self.max_dynamic_patch = 12
        self.downsample_ratio = 0.5
        self.image_size = 448
        self.use_thumbnail = True
        patch_size = 14
        self.patch_size = patch_size

        self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
        self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
        self.IMAGENET_STD = (0.229, 0.224, 0.225)
        self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
        self.IMG_START_TOKEN = '<img>'
        self.IMG_END_TOKEN = '</img>'

        self.transformer = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
        ])
        self.VP_START_TOKEN = '<vp>'
        self.VP_END_TOKEN = '</vp>'

        # change phi3 prepare for generation fuction
        if self.config.llm_config.architectures[0] == 'Phi3ForCausalLM':
            self.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation_phi3, self.language_model)

        img_context_token_id = tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>')
        self.img_context_token_id = img_context_token_id
        self.seg_token_idx = tokenizer.convert_tokens_to_ids('[SEG]')
        return

    def predict_forward(
            self,
            image=None,
            video=None,
            text=None,
            past_text='',
            mask_prompts=None,
            tokenizer=None,
    ):
        if not self.init_prediction_config:
            assert tokenizer
            self.preparing_for_generation(tokenizer=tokenizer)

        input_dict = {}
        if video is not None:
            pixel_values = []
            extra_pixel_values = []
            ori_image_size = video[0].size
            for frame_idx, frame_image in enumerate(video):
                assert ori_image_size == frame_image.size
                g_image = np.array(frame_image)  # for grounding
                g_image = self.extra_image_processor.apply_image(g_image)
                g_image = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
                extra_pixel_values.append(g_image)
                if frame_idx < 5:
                    img = self.transformer(frame_image)
                    pixel_values.append(img)

            pixel_values = torch.stack(pixel_values, dim=0).to(self.torch_dtype)  # (n_f, 3, h, w)
            g_pixel_values = torch.stack([
                self.grounding_encoder.preprocess_image(pixel) for pixel in extra_pixel_values
            ]).to(self.torch_dtype)
            num_image_tokens = self.patch_token
            num_frames = 5

            input_dict['vp_overall_mask'] = None
        else:
            ori_image_size = image.size

            # prepare grounding images
            g_image = np.array(image)  # for grounding
            g_image = self.extra_image_processor.apply_image(g_image)
            g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous().to(self.torch_dtype)
            extra_pixel_values = [g_pixel_values]
            g_pixel_values = torch.stack([
                self.grounding_encoder.preprocess_image(pixel) for pixel in extra_pixel_values
            ]).to(self.torch_dtype)

            images = dynamic_preprocess(image, self.min_dynamic_patch,
                                        self.max_dynamic_patch,
                                        self.image_size, self.use_thumbnail)

            if mask_prompts is not None:
                vp_overall_mask = torch.Tensor([False] * (len(images) - 1) + [True])
                input_dict['vp_overall_mask'] = vp_overall_mask
            else:
                input_dict['vp_overall_mask'] = None

            pixel_values = [self.transformer(image) for image in images]
            pixel_values = torch.stack(pixel_values).to(self.torch_dtype)
            num_image_tokens = pixel_values.shape[0] * self.patch_token
            num_frames = 1
        input_dict['g_pixel_values'] = g_pixel_values
        input_dict['pixel_values'] = pixel_values


        if mask_prompts is not None:
            # reshape mask prompts to feature size
            mask_prompts = [torch.Tensor(item).to(pixel_values.device) for item in mask_prompts]
            mask_prompts = [F.interpolate(
                item.unsqueeze(0),
                size=(int(self.image_size // self.patch_size * self.downsample_ratio),
                      int(self.image_size // self.patch_size * self.downsample_ratio)),
                mode='nearest').squeeze(0) for item in mask_prompts]
            region_pixels = []
            for mask_prompt in mask_prompts[0]:
                region_pixels.append(mask_prompt.bool().to(torch.int64).sum())

            vp_token_str = '\nThere are {} part regions in the picture: '.format(len(mask_prompts[0]))
            for i in range(len(mask_prompts[0])):
                vp_token_str = vp_token_str + \
                               f"region{i + 1}" + self.VP_START_TOKEN + \
                               self.IMG_CONTEXT_TOKEN * region_pixels[i] + \
                               self.VP_END_TOKEN
                if i == len(mask_prompts[0]) - 1:
                    vp_token_str = vp_token_str + '.\n'
                else:
                    vp_token_str = vp_token_str + ', '
        else:
            vp_token_str = ''

        image_token_str = f'{self.IMG_START_TOKEN}' \
                          f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                          f'{self.IMG_END_TOKEN}'
        image_token_str = image_token_str + '\n'
        image_token_str = image_token_str * num_frames
        image_token_str = image_token_str.strip()

        ret_masks = []

        if '<image>' in text or mask_prompts is not None:
            assert past_text is None or len(past_text) == 0
        text = text.replace('<image>', image_token_str + vp_token_str)
        input_text = ''
        input_text += self.template['INSTRUCTION'].format(
                input=text, round=1, bot_name=self.bot_name)
        input_text = past_text + input_text
        ids = self.tokenizer.encode(input_text)
        ids = torch.tensor(ids).cuda().unsqueeze(0)

        attention_mask = torch.ones_like(ids, dtype=torch.bool)

        mm_inputs = {
            'pixel_values': input_dict['pixel_values'],
            'input_ids': ids,
            'attention_mask': attention_mask,
            'position_ids': None,
            'past_key_values': None,
            'labels': None,
            'prompt_masks': mask_prompts,
            'vp_overall_mask': input_dict['vp_overall_mask'],
        }

        generate_output = self.generate(
            **mm_inputs,
            generation_config=self.gen_config,
            streamer=None,
            bos_token_id=self.tokenizer.bos_token_id,
            stopping_criteria=self.stop_criteria,
            output_hidden_states=True,
            return_dict_in_generate=True
        )
        predict = self.tokenizer.decode(
            generate_output.sequences[0], skip_special_tokens=False).strip()

        # if have seg result, find the seg hidden states
        hidden_states = generate_output.hidden_states
        last_hidden_states = [item[-1][0] for item in hidden_states]
        last_hidden_states = torch.cat(last_hidden_states, dim=0)
        seg_hidden_states = get_seg_hidden_states(
            last_hidden_states, generate_output.sequences[0][:-1],
            seg_id=self.seg_token_idx
        )
        all_seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)

        for seg_hidden_states in all_seg_hidden_states:
            seg_hidden_states = seg_hidden_states.unsqueeze(0)
            g_pixel_values = input_dict['g_pixel_values']
            sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
            pred_masks = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * num_frames)
            w, h = ori_image_size
            masks = F.interpolate(pred_masks, size=(h, w), mode='bilinear', align_corners=False)
            masks = masks[:, 0]
            masks = masks.sigmoid() > 0.5
            masks = masks.cpu().numpy()
            ret_masks.append(masks)

        return {'prediction': predict, 'prediction_masks': ret_masks,}

def get_seg_hidden_states(hidden_states, output_ids, seg_id):
    seg_mask = output_ids == seg_id
    n_out = len(seg_mask)
    if n_out == 0:
        return hidden_states[0:0]
    return hidden_states[-n_out:][seg_mask]

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height,
                              image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image,
                       min_num=1,
                       max_num=6,
                       image_size=448,
                       use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = {(i, j)
                     for n in range(min_num, max_num + 1)
                     for i in range(1, n + 1) for j in range(1, n + 1)
                     if i * j <= max_num and i * j >= min_num}
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio,
                                                    target_ratios, orig_width,
                                                    orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = ((i % (target_width // image_size)) * image_size,
               (i // (target_width // image_size)) * image_size,
               ((i % (target_width // image_size)) + 1) * image_size,
               ((i // (target_width // image_size)) + 1) * image_size)
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


from transformers.cache_utils import Cache, DynamicCache

def prepare_inputs_for_generation_phi3(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
    if past_key_values is not None:
        if isinstance(past_key_values, Cache):
            cache_length = past_key_values.get_seq_length()
            past_length = past_key_values.seen_tokens
            max_cache_length = past_key_values.get_max_length()
        else:
            cache_length = past_length = past_key_values[0][0].shape[2]
            max_cache_length = None

        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
        if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
        ):
            attention_mask = attention_mask[:, -max_cache_length:]

    position_ids = kwargs.get('position_ids', None)
    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1]:]

    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0):
        model_inputs = {'inputs_embeds': inputs_embeds}
    else:
        model_inputs = {'input_ids': input_ids}

    model_inputs.update(
        {
            'position_ids': position_ids,
            'past_key_values': past_key_values,
            'use_cache': kwargs.get('use_cache'),
            'attention_mask': attention_mask,
        }
    )
    return model_inputs