File size: 15,466 Bytes
6fc34ba
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc1a8f2680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc1a8f2710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc1a8f27a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc1a8f2830>", "_build": "<function ActorCriticPolicy._build at 0x7fbc1a8f28c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbc1a8f2950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc1a8f29e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbc1a8f2a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc1a8f2b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc1a8f2b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc1a8f2c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbc1a945390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True]", "bounded_above": "[ True  True  True  True]", "_np_random": null}, "n_envs": 6, "num_timesteps": 503808, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652451543.2770567, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAgAAAAAAAPw1WD6mMJY9B3HBPndPVT02AvK+W1aEP+Ag+L0BTuq/AACAP0KUgz/7UhC/qDWRvgAAgL8AAIA/XZemPruyqD4+ka4+sNS4PuGhyT7CFeI+6DwBP8/9Gj/A2lA/AACAP2cwWzyjFYE9R2RMPrw2Az5rHBe/UA2AP2zVjj41mqS/AACAP0EakT8AACq3VAr/PrNGgL8AAIA/QXmYPn9/mj7OEaE+Rq+sPsBZvj4Qjdc+D1wAP10iIT8UOlk/AACAP/UUeD5FpZc9JeC6PhHp/rzieM29j+oAPxqVDL///3+/AAAAAHe9iz8S92i+6Ev2vgAAgL8AAAAAlAiqPg18qj7x9q4++C24PsXExz6ESt8+Ij0CP8UbKD/ANXg/AACAP1re+j436yM8BMv0Piiq8zse8iO/DoGBv2Ce8L3jKjw/AACAP0p0jj8AAAAArnY4P///fz8AAAAAk9GdPquwnD6SHp8+hmOlPk/ysD4zgMM+klvgPunTBz9dNDM/AACAP7qIvD7J+DY9nMWsPsE9lbzJ2Wu+9P9/P4bZI7/8/3+/AAAAAHI7iD86IUM/9D4iv///f78AAAAAr12fPmJMoT5PIKc+HXWzPrzZxj7L4eI+AuYDP8O1HT9scVA/AACAP+LKnj60iY09bMyCPikvhzzW2oS+bj0/P5RH1L7//3+/AACAP6YpgD8EHaY94BPKvgEAgL8AAAAAXr2iPv8tpD5LIqo+amq1PiWlxz5WjuM+un0GP4RhKD8wNGI/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBksYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITI3Qz9TPM8CUhpRSlIwBbJRN9gGMAXSUR0C0Fr1OwgTzdX2UKGgGaAloD0MIeNUD5uF4cECUhpRSlGgVTbsFaBZHQLQZB1RceKd1fZQoaAZoCWgPQwh9CRUcXrNeQJSGlFKUaBVNAAVoFkdAtB/+/zreInV9lChoBmgJaA9DCPcdw2O/KXBAlIaUUpRoFU0HBmgWR0C0IBtiH6/JdX2UKGgGaAloD0MI+yKhLacTcECUhpRSlGgVTQQGaBZHQLQh2uBczIp1fZQoaAZoCWgPQwhaZaa0fjVwQJSGlFKUaBVN8wVoFkdAtCJBBD5TInV9lChoBmgJaA9DCKYpApxeT3BAlIaUUpRoFU0FBmgWR0C0IvWqPwNLdX2UKGgGaAloD0MIBVPNrGVRcECUhpRSlGgVTd0FaBZHQLQk4N3np0R1fZQoaAZoCWgPQwiL3xRWqldwQJSGlFKUaBVNzwVoFkdAtCV6aRZED3V9lChoBmgJaA9DCEkPQ6uTAHBAlIaUUpRoFU09BmgWR0C0JfnvMKTjdX2UKGgGaAloD0MIBkg0gWJdcECUhpRSlGgVTbMFaBZHQLQnTAgxJul1fZQoaAZoCWgPQwi7mjxlNTdwQJSGlFKUaBVN7wVoFkdAtC6+MvRJE3V9lChoBmgJaA9DCFT9SufDY3BAlIaUUpRoFU2yBWgWR0C0LxXz+WGAdX2UKGgGaAloD0MIhIJStHL9W0CUhpRSlGgVTc0EaBZHQLQwyWJrLyN1fZQoaAZoCWgPQwj0iqce6WtvQJSGlFKUaBVNQAZoFkdAtDGOdEsrd3V9lChoBmgJaA9DCCBCXDl7eHBAlIaUUpRoFU2JBWgWR0C0MftXtBv8dX2UKGgGaAloD0MIRgpl4WtOcECUhpRSlGgVTe4FaBZHQLQzn/Q0GeN1fZQoaAZoCWgPQwjHSPYINaFwQJSGlFKUaBVNcwVoFkdAtDO9KdxyXHV9lChoBmgJaA9DCDKvIw4ZL3BAlIaUUpRoFU0ABmgWR0C0NJFF+d9VdX2UKGgGaAloD0MI63B0lW4YcECUhpRSlGgVTQEGaBZHQLQ840Jng511fZQoaAZoCWgPQwhfJ/Vl6WdwQJSGlFKUaBVNtgVoFkdAtD1hlNDc/XV9lChoBmgJaA9DCNREn48yL21AlIaUUpRoFU1ABmgWR0C0PkJKFqSHdX2UKGgGaAloD0MIvMywUZZocECUhpRSlGgVTa4FaBZHQLQ/g5sTFl11fZQoaAZoCWgPQwiLiGLyxg1wQJSGlFKUaBVNFQZoFkdAtD/J9uxbCHV9lChoBmgJaA9DCPa0w18TPnBAlIaUUpRoFU3vBWgWR0C0QJ44MnZ1dX2UKGgGaAloD0MI4nSSra6rcECUhpRSlGgVTZcFaBZHQLRCA/qgRK91fZQoaAZoCWgPQwhevYqMjldwQJSGlFKUaBVNuwVoFkdAtEKk22oegnV9lChoBmgJaA9DCMIv9fNmXXBAlIaUUpRoFU2/BWgWR0C0SjLe2uxKdX2UKGgGaAloD0MIZED2enercECUhpRSlGgVTXwFaBZHQLRLLUpd8iR1fZQoaAZoCWgPQwjWGd8XF2ZwQJSGlFKUaBVN3gVoFkdAtEvINlRP43V9lChoBmgJaA9DCPLs8q0PE29AlIaUUpRoFU1ABmgWR0C0TO+S8rZrdX2UKGgGaAloD0MIR+f8FEdFcECUhpRSlGgVTeMFaBZHQLROOmZmZmZ1fZQoaAZoCWgPQwi+3v3xHjZwQJSGlFKUaBVNHwZoFkdAtE+ZFpfx+nV9lChoBmgJaA9DCPorZK6MUHBAlIaUUpRoFU3WBWgWR0C0UD7c45tFdX2UKGgGaAloD0MIeJlho6yPcECUhpRSlGgVTYoFaBZHQLRQ9/x2B8R1fZQoaAZoCWgPQwh79Ib7iHBwQJSGlFKUaBVNzAVoFkdAtFHNgTh5xHV9lChoBmgJaA9DCBHEeTgBRHBAlIaUUpRoFU3NBWgWR0C0WXzHGS6ldX2UKGgGaAloD0MIE2VvKefOUECUhpRSlGgVTb4DaBZHQLRaOaSs8xN1fZQoaAZoCWgPQwhHj9/btDhwQJSGlFKUaBVNCAZoFkdAtFram3vx6XV9lChoBmgJaA9DCOsB85Cpa3BAlIaUUpRoFU3MBWgWR0C0W3jDfm9ydX2UKGgGaAloD0MIdCUC1f+jcECUhpRSlGgVTaMFaBZHQLRcvgYxcml1fZQoaAZoCWgPQwiqfqXzoWNwQJSGlFKUaBVNvgVoFkdAtF2uRuCPIXV9lChoBmgJaA9DCIz4Tsz6+G9AlIaUUpRoFU0SBmgWR0C0XyHZsbeedX2UKGgGaAloD0MI0nDK3PyOcECUhpRSlGgVTbIFaBZHQLRfempEQXh1fZQoaAZoCWgPQwjH9IQlnnlwQJSGlFKUaBVNrgVoFkdAtGASUgSvknV9lChoBmgJaA9DCHKG4o43lHBAlIaUUpRoFU2bBWgWR0C0Zx4a5wwTdX2UKGgGaAloD0MIpkV9kvuicECUhpRSlGgVTYEFaBZHQLRoPBSk0rN1fZQoaAZoCWgPQwii0/NuLM5cQJSGlFKUaBVNtwRoFkdAtGh7yrgfl3V9lChoBmgJaA9DCO0RaoZUaShAlIaUUpRoFU1nAmgWR0C0amyVW0Z4dX2UKGgGaAloD0MI6J/gYkXaY0CUhpRSlGgVTV4FaBZHQLRqgxR2r4p1fZQoaAZoCWgPQwhsIjMXeKBwQJSGlFKUaBVNsAVoFkdAtGsmSEDhcnV9lChoBmgJaA9DCK+ZfLONNHBAlIaUUpRoFU3pBWgWR0C0a/GcawUydX2UKGgGaAloD0MIGqN1VHWBcECUhpRSlGgVTbkFaBZHQLRsUyfcvdx1fZQoaAZoCWgPQwgQQGoT54pwQJSGlFKUaBVNnAVoFkdAtG2QeJYT03V9lChoBmgJaA9DCGfxYmGIZ15AlIaUUpRoFU3dBGgWR0C0dl10xM37dX2UKGgGaAloD0MIb/HwnkPicECUhpRSlGgVTVcFaBZHQLR2vMRYigV1fZQoaAZoCWgPQwgbRkHw+EBKwJSGlFKUaBVNSwFoFkdAtHeRZpztC3V9lChoBmgJaA9DCDTyecUTLHBAlIaUUpRoFU3xBWgWR0C0eAW5tm+TdX2UKGgGaAloD0MIzhq8rwrYcECUhpRSlGgVTWUFaBZHQLR4vCI1tO51fZQoaAZoCWgPQwg9npYfeF9wQJSGlFKUaBVN2gVoFkdAtHjHokiUxHV9lChoBmgJaA9DCIrNx7UhAnBAlIaUUpRoFU0RBmgWR0C0etD2rXDndX2UKGgGaAloD0MImQ0yyQhXcECUhpRSlGgVTcoFaBZHQLR8TeOn2qV1fZQoaAZoCWgPQwizeRwGc5VwQJSGlFKUaBVNlQVoFkdAtINl7TlT33V9lChoBmgJaA9DCAM/qmG/DlPAlIaUUpRoFUu/aBZHQLSDcfaHsTp1fZQoaAZoCWgPQwgTYi6pWodwQJSGlFKUaBVNqgVoFkdAtIPyO7xusXV9lChoBmgJaA9DCAdi2cyhkXBAlIaUUpRoFU2tBWgWR0C0hKwc5sCUdX2UKGgGaAloD0MIn5PeNz4ocECUhpRSlGgVTREGaBZHQLSFEauOjqR1fZQoaAZoCWgPQwisOUAwR65YwJSGlFKUaBVLZmgWR0C0hack2P1ddX2UKGgGaAloD0MI5l31gPm2bkCUhpRSlGgVTUAGaBZHQLSHUBciW3V1fZQoaAZoCWgPQwj4Nv3Zz1JwQJSGlFKUaBVNzwVoFkdAtIkD7bcoIHV9lChoBmgJaA9DCKH3xhBAC3BAlIaUUpRoFU06BmgWR0C0iV0bo8p1dX2UKGgGaAloD0MIZohjXdxucECUhpRSlGgVTdQFaBZHQLSJhcFyJbd1fZQoaAZoCWgPQwiutmJ/2QZwQJSGlFKUaBVNFgZoFkdAtIpxFDv3J3V9lChoBmgJaA9DCJQRF4DGinBAlIaUUpRoFU2TBWgWR0C0isEbLlmwdX2UKGgGaAloD0MIBabTug02OMCUhpRSlGgVTfgBaBZHQLSTKGc4HX51fZQoaAZoCWgPQwiTAgtgyjlwQJSGlFKUaBVN+QVoFkdAtJOj0J4SpXV9lChoBmgJaA9DCBLcSNkie1FAlIaUUpRoFU26A2gWR0C0k6+tCAtndX2UKGgGaAloD0MIBwjm6PF9cECUhpRSlGgVTbcFaBZHQLSVQGipNsZ1fZQoaAZoCWgPQwj8/s2LE6NwQJSGlFKUaBVNhwVoFkdAtJWYsbvPT3V9lChoBmgJaA9DCNZuu9BcUzdAlIaUUpRoFU28AmgWR0C0lcjJEH+qdX2UKGgGaAloD0MIqaPjauTFcECUhpRSlGgVTXEFaBZHQLSWyOvdM0x1fZQoaAZoCWgPQwjZImk3+sRwQJSGlFKUaBVNfgVoFkdAtJjY1LrX2HV9lChoBmgJaA9DCBf03hiCsnBAlIaUUpRoFU2QBWgWR0C0mN/MB6rvdX2UKGgGaAloD0MIIsK/CNqrcECUhpRSlGgVTVcFaBZHQLShDIRAbAF1fZQoaAZoCWgPQwiITPkQ1H9wQJSGlFKUaBVNtQVoFkdAtKER78ejmHV9lChoBmgJaA9DCBHhXwRNWnBAlIaUUpRoFU25BWgWR0C0oZKN2ki2dX2UKGgGaAloD0MIAIxn0NAlbECUhpRSlGgVTUAGaBZHQLSjAHR1HON1fZQoaAZoCWgPQwiEDU+vFItwQJSGlFKUaBVNsQVoFkdAtKSP8MuvlnV9lChoBmgJaA9DCF/svfjiPXBAlIaUUpRoFU3MBWgWR0C0pLBaouPFdX2UKGgGaAloD0MIFeP8TSiPcECUhpRSlGgVTZkFaBZHQLSmI8Hv+fh1fZQoaAZoCWgPQwimme510ilwQJSGlFKUaBVN6QVoFkdAtKaSb+cYqHV9lChoBmgJaA9DCCU/4lfsSXBAlIaUUpRoFU3GBWgWR0C0pwKcNH6NdX2UKGgGaAloD0MIuFZ72MsRcECUhpRSlGgVTSQGaBZHQLSvNEkjX4F1fZQoaAZoCWgPQwi+hXXj3REawJSGlFKUaBVNIAJoFkdAtK9gj9n9N3V9lChoBmgJaA9DCJI9Qs0QCXBAlIaUUpRoFU3+BWgWR0C0sLFpoK2KdX2UKGgGaAloD0MIp804DVEzcECUhpRSlGgVTfoFaBZHQLSwzFV1fVt1fZQoaAZoCWgPQwg4LXjR11lwQJSGlFKUaBVN5wVoFkdAtLKnnxJ/X3V9lChoBmgJaA9DCGe0VUlkGHBAlIaUUpRoFU0xBmgWR0C0s1XscABDdX2UKGgGaAloD0MI9UiD21qBcECUhpRSlGgVTZsFaBZHQLS08rK/2011fZQoaAZoCWgPQwg0uoPY2U9wQJSGlFKUaBVN3wVoFkdAtLVXbN8mbHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1148, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 7, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/HCj1wo9cKhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.9.1", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}