--- license: mit tags: - moe - frankenmoe - merge - mergekit - lazymergekit - Open-Orca/Mistral-7B-OpenOrca - Crystalcareai/Evol-Mistral base_model: - Open-Orca/Mistral-7B-OpenOrca - Crystalcareai/Evol-Mistral --- # Evolorxa-14b Evolorxa-14b is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co./Open-Orca/Mistral-7B-OpenOrca) * [Crystalcareai/Evol-Mistral](https://huggingface.co./Crystalcareai/Evol-Mistral) ## 🧩 Configuration ```yaml slices: - sources: - model: Open-Orca/Mistral-7B-OpenOrca layer_range: [0, 32] - model: Crystalcareai/Evol-Mistral layer_range: [0, 32] merge_method: slerp base_model: Open-Orca/Mistral-7B-OpenOrca parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 experts: - source_model: Open-Orca/Mistral-7B-OpenOrca positive_prompts: - "chat" - "reasoning" - "Why would" - "explain" - source_model: Crystalcareai/Evol-Mistral positive_prompts: - "instruction" - "create a" - "You must" - "Your job" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Crystalcareai/Evolorxa-14b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```