File size: 1,774 Bytes
fcdb002
ec6ecbd
 
fcdb002
ec6ecbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcdb002
ec6ecbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
language:
- en
license: apache-2.0
tags:
- roberta
- classification
- dialog state tracking
- natural language understanding
- uncertainty
- conversational system
- task-oriented dialog
datasets:
- ConvLab/multiwoz21
metrics:
- Joint Goal Accuracy
- Slot F1
- Joint Goal Expected Calibration Error

model-index:
- name: setsumbt-dst-nlu-multiwoz21
  results:
  - task:
      type: classification
      name: dialog state tracking
    dataset:
      type: ConvLab/multiwoz21
      name: MultiWOZ21
      split: test
    metrics:
      - type: Joint Goal Accuracy
        value: 51.8
        name: JGA
      - type: Slot F1
        value: 91.1
        name: Slot F1
      - type: Joint Goal Expected Calibration Error
        value: 12.7
        name: JECE

---

# SetSUMBT-dst-nlu-multiwoz21

This model is a fine-tuned version [SetSUMBT](https://github.com/ConvLab/ConvLab-3/tree/master/convlab/dst/setsumbt) of [roberta-base](https://huggingface.co./roberta-base) on [MultiWOZ2.1](https://huggingface.co./datasets/ConvLab/multiwoz21).
This model is a combined DST and NLU model and is a distribution distilled version of a ensemble of 5 models. This model should be used to produce uncertainty estimates for the dialogue belief state.

Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00001
- train_batch_size: 3
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 1
- optimizer: AdamW
- loss: Ensemble Distribution Distillation Loss
- lr_scheduler_type: linear
- num_epochs: 50.0

### Framework versions

- Transformers 4.17.0
- Pytorch 1.8.0+cu110
- Datasets 2.3.2
- Tokenizers 0.12.1