CiaraRowles commited on
Commit
9f2539b
1 Parent(s): 287902a

Upload runtemporalnetxl.py

Browse files
Files changed (1) hide show
  1. runtemporalnetxl.py +9 -54
runtemporalnetxl.py CHANGED
@@ -24,9 +24,14 @@ def frame_number(frame_filename):
24
  # Extract the frame number from the filename and convert it to an integer
25
  return int(frame_filename[5:-4])
26
 
 
 
 
 
 
27
  # Argument parser
28
  parser = argparse.ArgumentParser(description='Generate images based on video frames.')
29
- parser.add_argument('--prompt',default='a woman',help='the stable diffusion prompt')
30
  parser.add_argument('--video_path', default='./None.mp4', help='Path to the input video file.')
31
  parser.add_argument('--frames_dir', default='./frames', help='Directory to save the extracted video frames.')
32
  parser.add_argument('--output_frames_dir', default='./output_frames', help='Directory to save the generated images.')
@@ -40,8 +45,8 @@ output_frames_dir = args.output_frames_dir
40
  init_image_path = args.init_image_path
41
  prompt = args.prompt
42
 
43
- # If frames do not already exist, split video into frames
44
- if not os.path.exists(frames_dir):
45
  split_video_into_frames(video_path, frames_dir)
46
 
47
  # Create output frames directory if it doesn't exist
@@ -56,55 +61,5 @@ else:
56
  initial_frame_path = os.path.join(frames_dir, "frame0000.png")
57
  last_generated_image = load_image(initial_frame_path)
58
 
59
- base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
60
- controlnet1_path = "CiaraRowles/TemporalNet1XL"
61
- controlnet2_path = "diffusers/controlnet-canny-sdxl-1.0"
62
-
63
- controlnet = [
64
- ControlNetModel.from_pretrained(controlnet1_path, torch_dtype=torch.float16),
65
- ControlNetModel.from_pretrained(controlnet2_path, torch_dtype=torch.float16)
66
- ]
67
- #controlnet = ControlNetModel.from_pretrained(controlnet2_path, torch_dtype=torch.float16)
68
-
69
- pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
70
- base_model_path, controlnet=controlnet, torch_dtype=torch.float16
71
- )
72
-
73
- #pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
74
- #pipe.enable_xformers_memory_efficient_attention()
75
- pipe.enable_model_cpu_offload()
76
-
77
- generator = torch.manual_seed(7)
78
-
79
- # Loop over the saved frames in numerical order
80
- frame_files = sorted(os.listdir(frames_dir), key=frame_number)
81
-
82
- for i, frame_file in enumerate(frame_files):
83
- # Use the original video frame to create Canny edge-detected image as the conditioning image for the first ControlNetModel
84
- control_image_path = os.path.join(frames_dir, frame_file)
85
- control_image = load_image(control_image_path)
86
-
87
- canny_image = np.array(control_image)
88
- canny_image = cv2.Canny(canny_image, 25, 200)
89
- canny_image = canny_image[:, :, None]
90
- canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
91
- canny_image = Image.fromarray(canny_image)
92
-
93
- # Generate image
94
- image = pipe(
95
- prompt, num_inference_steps=20, generator=generator, image=[last_generated_image, canny_image], controlnet_conditioning_scale=[0.6, 0.7]
96
- #prompt, num_inference_steps=20, generator=generator, image=canny_image, controlnet_conditioning_scale=0.5
97
- ).images[0]
98
-
99
- # Save the generated image to output folder
100
- output_path = os.path.join(output_frames_dir, f"output{str(i).zfill(4)}.png")
101
- image.save(output_path)
102
-
103
- # Save the Canny image for reference
104
- canny_image_path = os.path.join(output_frames_dir, f"outputcanny{str(i).zfill(4)}.png")
105
- canny_image.save(canny_image_path)
106
-
107
- # Update the last_generated_image with the newly generated image for the next iteration
108
- last_generated_image = image
109
 
110
- print(f"Saved generated image for frame {i} to {output_path}")
 
24
  # Extract the frame number from the filename and convert it to an integer
25
  return int(frame_filename[5:-4])
26
 
27
+ def count_frame_images(frames_dir):
28
+ # Count the number of frame images in the directory
29
+ frame_files = [f for f in os.listdir(frames_dir) if f.startswith('frame') and f.endswith('.png')]
30
+ return len(frame_files)
31
+
32
  # Argument parser
33
  parser = argparse.ArgumentParser(description='Generate images based on video frames.')
34
+ parser.add_argument('--prompt', default='a woman', help='the stable diffusion prompt')
35
  parser.add_argument('--video_path', default='./None.mp4', help='Path to the input video file.')
36
  parser.add_argument('--frames_dir', default='./frames', help='Directory to save the extracted video frames.')
37
  parser.add_argument('--output_frames_dir', default='./output_frames', help='Directory to save the generated images.')
 
45
  init_image_path = args.init_image_path
46
  prompt = args.prompt
47
 
48
+ # If frame images do not already exist, split video into frames
49
+ if count_frame_images(frames_dir) == 0:
50
  split_video_into_frames(video_path, frames_dir)
51
 
52
  # Create output frames directory if it doesn't exist
 
61
  initial_frame_path = os.path.join(frames_dir, "frame0000.png")
62
  last_generated_image = load_image(initial_frame_path)
63
 
64
+ # ... (rest of the script remains unchanged)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65